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Abstract

The error-in-covariates problem has received great attention among researchers

who study semiparametric and nonparametric inference for regression models over

the past two decades. Without correcting for the measurement error in covariates,

estimators for covariate effect usually contain bias. To account for measurement er-

ror, much research have been done in mean regression (Liang et al., 1999; Fuller,

2009; Carroll et al., 2006) and quantile regression (He and Liang, 2000; Hardle et al.,

2000; Wei and Carroll, 2009). In contrast, there is little research in mode regression

and this motivates us to propose semiparametric methods to address this error-in-

covariates problem in Chapters 1 and 3.

Chapter 1 considers estimating the mode of a response given an error-prone co-

variate X by assuming that the mode of Y given X is a linear function of X. It

is first shown that ignoring measurement error typically leads to inconsistent infer-

ence for the mode of the response given the true covariate, as well as misleading

inference for regression coefficients in the conditional mode model. To account for

measurement error, the Monte Carlo corrected score method (Novick and Stefanski,

2002) is employed to numerically obtain an unbiased score function based on which

the regression coefficients is estimated consistently. To relax the normality assump-

tion on measurement error the first method requires, the corrected kernel method

is proposed. In this method, an objective function constructed using deconvoluting

kernels is maximized to obtain consistent estimators of the regression coefficients.

Besides rigorous investigation on large sample properties of the new estimators, we

study their finite sample performance via extensive simulation experiments, and find
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that the proposed methods substantially outperform a naive inference method that

ignores measurement error.

In Chapter 2, we assume that the mode of Y is a linear function of a covariate X

and it also depends on another covariate T in an unspecified functional form. This

leads to a partially linear model for the conditional mode. We employ B-splines to

approximate the unspecified function that relates Y and T . To estimate the covariate

effects explaining the association between Y and X, and at the same time, estimate

the unspecified function linking Y and T , we develop two methods for inferring these

two parts of the partially linear mode model. A simulation study is designed to show

the performance of two proposed methods. Chapter 3 considers estimating the mode

of a response in partially linear models when the aforementioned X is error-prone. To

account for measurement error, we incorporate the corrected kernel method proposed

in Chapter 1 and the proposed estimation methods in Chapter 2 to infer the para-

metric part and nonparametric part of the conditional mode accounting for measure-

ment error in X. Results from simulation studies suggest that the proposed method

substantially outperform a naive inference method that ignores measurement error.

Instead of considering error-prone covariates, in Chapter 4, we consider a scenario

where the response is contaminated by Berkson measurement error. In particular, we

tackle the regression analysis for a pooled continuous response. Finally, Chapter 5

discusses future research in my dissertation.
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Chapter 1

Linear Mode Regression with Covariate

Measurement Error

1.1 Introduction

Regression analysis has been a standard platform on which one studies the asso-

ciation between a response, Y , and covariates of interest, X. The majority of the

literature on regression analysis is devoted to mean regression, where the mean of

Y given X is the focal point of inference. There also exists a large body of work

on quantile regression, where one infers quantiles of Y conditioning on X (Koenker,

2005). In contrast, there have been much less study on mode regression (Lee, 1989;

Yao and Li, 2014; Chen et al., 2016), which aims to characterize the mode of Y

given X. The mode of a distribution is an informative summary feature that is more

of interest than the mean or quantiles in many applications (Parzen, 1962), such

as biology (Hedges and Shah, 2003), economy (Huang and Yao, 2012), meteorology

(Hyndman et al., 1996), astronomy (Bamford et al., 2008), and traffic engineering

(Einbeck and Tutz, 2006), where the underlying distributions of Y given X are of-

ten skewed. In these referenced works, the most likely value of Y given a covariate

value, as opposed to some average value of the response, is of scientific interest; and

a location measure that is resistant to outliers, such as the mode, is more appealing.

In these applications, some covariates cannot be measured directly or precisely, and

only data for their error-contaminated surrogates are collected.

To address complications caused by error-prone covariates, a good collection of
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methods for mean regression that account for covariate measurement error have been

developed (Fuller, 2009; Carroll et al., 2006). There are also some approaches that

take measurement error into consideration in quantile regression (He and Liang, 2000;

Wei and Carroll, 2009; Wang et al., 2012). However, there is little research on mode

regression in the presence of measurement error in covariates. The only work we are

aware of that addresses measurement error in mode regression is by Zhou and Huang

(2016), where the authors proposed nonparametric methods to estimate the mode of

Y given X based on kernel density estimators. Different from the nonparametric route

they took, here we consider a class of linear mode regression models, following the

footsteps of existing works on mean regression (Fuller, 2009) and quantile regression

(He and Liang, 2000; Wei and Carroll, 2009; Wang et al., 2012) with measurement

error, where one starts by considering the conditional mean or quantiles as some

linear function of covariates. This class of mode regression models has been mostly

investigated by econometricians (Lee, 1989, 1993; Kemp and Silva, 2012), and all

existing works assume error-free covariates. To the best of our knowledge, we are the

first to investigate linear mode regression with covariate measurement error.

In this chapter, we first formulate the class of linear measurement error mode mod-

els in Section 1.2, and provide some preliminary analysis on the effect of measurement

error on inference when one ignores measurement error. We propose two methods

to estimate the regression coefficients in the model that account for measurement

error in Section 1.3. Both methods depend on the choice of a bandwidth, for which

we present a strategy in Section 1.4. Section 1.5 reports simulation studies where

we compare the two proposed methods with a naive method that ignores measure-

ment error, using estimates from the method proposed by Yao and Li (2014) applied

to error-free data as benchmarks. Section 1.6 presents an application of the three

methods to dietary data collected from the Women’s Interview Survey of Health. We

point out extension of the proposed methods under more general settings and discuss

2
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follow-up research agendas in Section 1.7.

1.2 Preambles

Data and models

Suppose that the observed data consist of n independent data points, {(Yj, Wj)}n
j=1,

where {Wj}n
j=1 are surrogates of the unobserved covariate values, {Xj}n

j=1, and Yj

given Xj follows a distribution specified by the probability density function fY |X(y |

x), for j = 1, . . . , n. As in Grund and Hall (1995), we assume that fY |X(y | x) has

a unique largest mode; in particular, we assume a linear model for this conditional

mode,

yM(x) = Mode(Yj | Xj = x) = β0 + β1x (j = 1, . . . , n), (1.1)

where β = (β0, β1)T is the regression coefficient vector containing parameters to be

estimated.

A classical additive measurement error model is assumed in this study, according

to which Wj relates to Xj via

Wj = Xj + Uj, (1.2)

where Uj is the nondifferential measurement error (Carroll et al., 2006, Section 2.5),

for j = 1, . . . , n, following a distribution specified by the density function fU(u),

of which the mean is zero and variance is σ2. Measurement error in (1.2) being

nondifferential essentially implies that, conditioning on X, Y and W are independent,

where the index j is suppressed when we refer to a generic data point, Xj, Yj, or

Wj, for j ∈ {1, . . . , n}. For model identifiability reasons, we assume fU(u) known.

Considerations for cases where extra data are available to infer fU(u) are given in

Section 1.7. Finally, we consider a univariate covariate for illustration purposes in

the majority of the study, and discuss in Section 1.7 generalization to multivariate

covariates that may include some error-free components.
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Naive inference

Denote by y∗
M(w) the mode of the conditional density of Y given W = w, fY |W (y |

w). In the context of linear mode regression, a naive inference method infers y∗
M(w)

assuming, as in (1.1), y∗
M(w) = β∗

0 + β∗
1w. In what follows, we use an example to

demonstrate that naive inference for the mode function can be misleading.

Suppose Y given X = x follows a distribution with mean m(x) = α0 + α1x and

standard deviation σ(x) = γ0 + γ1x, where α0, α1( ̸= 0), γ0 and γ1 are constants free

of x. In addition, suppose X ∼ N(µX , σ2
X) and U ∼ N(0, σ2). Then, conditioning on

W = w, Y follows a distribution with mean and standard deviation given by (Fuller,

2009)
m∗(w) = α0 + (1 − λ)α1µX + λα1w,

σ∗(w) =
√

{γ0 + (1 − λ)γ1µX + λγ1w}2 + (1 − λ)α2
1σ2

X ,

(1.3)

respectively, where λ = σ2
X/(σ2

X + σ2) is the reliability ratio (Carroll et al., 2006,

Section 3.2.1). Define two standardized mean residuals, e = {Y − m(X)}/σ(X) and

e∗ = {Y − m∗(W )}/σ∗(W ). Denote by eM(x) the mode of e given X = x, and by

e∗
M(w) the mode of e∗ given W = w. One can show that

yM(x) = m(x) + σ(x)eM(x) = α0 + α1x + (γ0 + γ1x)eM(x),

and similarly

y∗
M(w) = m∗(w) + σ∗(w)e∗

M(w)

= α0 + (1 − λ)α1µX + λα1w+√
{γ0 + (1 − λ)γ1µX + λγ1w}2 + (1 − λ)α2

1σ2
Xe∗

M(w).

(1.4)

Comparing yM(x) and y∗
M(w) above, one can see that, even if eM(x) and e∗

M(w) are

both constant functions, the naive mode y∗
M(w) is not a linear function unless γ1 = 0

or λ = 1, whereas the true mode yM(x) is linear if eM(x) does not depend on x.

This example suggests that naive linear mode regression usually involves an extra

layer of model misspecification compared to naive linear mean regression. As one
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sees in (1.3), when m(x) is linear in x, m∗(w) is also linear in w when X and U are

independent normal random variables. Thus effects of measurement error on mode

regression are in general far more complicated than those in the context of mean

regression. In this example, if γ1 = 0, β∗
1 in the naive mode model revealed in (1.4)

reduces to λα1, which is attenuated compared to β1 = α1 in (1.1) when eM(x) is free

of x.

1.3 Proposed Methods

Inference in the absence of measurement error

Given a fixed y in the support of Y , Qh(y) = n−1∑n
j=1 Kh(Yj − y) is the local

constant kernel density estimator (Silverman, 1986) of the density of Y evaluated at y,

fY (y), where K(t) is a kernel, h is the bandwidth, and Kh(t) = K(t/h)/h. Since the

mode of Y maximizes its density function fY (y), a sensible estimator for the mode of

Y is the maximizer of Qh(y). Motivated by this viewpoint, in the absence of covariate

measurement error, Yao and Li (2014) proposed to estimate β by maximizing

Qh(β) = n−1
n∑

j=1
Kh(Yj − β0 − β1Xj). (1.5)

Setting K(t) as the standard normal density, Yao and Li (2014) developed an ex-

pectation maximization algorithm to compute their estimate of β, denoted by β̂YL.

In addition, they derived the order of the bias and variance of β̂YL as n → ∞, and

established its asymptotic normality.

Naive implementation of Yao and Li’s method using error-contaminated data is to

substitute Xj with Wj in (1.5), resulting in a naive objective function one maximizes

with respect to β. Denote by β̂NV the resultant naive estimator of β. To account for

measurement error, we revise this naive method from two perspectives.
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Monte Carlo corrected score method

Maximizing Qh(β) in (1.5) with respect to β is equivalent to solving the score

equations for β, ∑n
j=1 Ψ(Yj, Xj; β) = 0, where Ψ(Yj, Xj; β) = (∂/∂β)Kh(Yj − β0 −

β1Xj). In the presence of measurement error, naively applying Yao and Li’s method

amounts to using the naive score, Ψ(Y, W ; β), in place of the true score, Ψ(Y, X; β).

One way to correct this naive score-based estimation for measurement error is to

construct a score function that depends on (Y, W ), whose expectation conditioning on

(Y, X) is equal to Ψ(Y, X; β). This leads to the corrected score method (Nakamura,

1990), which has found its successes in linear mean regression, several nonlinear

mean regression models (Carroll et al., 2006, Chapter 7), and some survival models

(Song and Huang, 2005; Wang, 2006; Zucker and Spiegelman, 2008) with covariate

measurement error.

Although the idea of correcting the naive score by using an unbiased estimator

of the true score leads to a very general strategy to account for measurement error,

such unbiased estimator, referred to as a corrected score, often does not exist in

closed form. Novick and Stefanski (2002) developed a Monte Carlo procedure to

numerically obtain a corrected score under the assumption that U ∼ N(0, σ2) and

Ψ(Y, X; β) is an entire function with respect to its second argument (Boas, 2011). By

using the standard normal kernel in (1.5), we have the true score Ψ(Y, X, β) as an

entire function in X, which allows us follow their Monte Carlo procedure to obtain

an estimator of β via the following four-step algorithm.

• MC-1: For b = 1, . . . , B, generate independent random errors, {Ub,j}n
j=1, from

N(0, σ2).

• MC-2: Form the complex-valued data, {W̃b,j = Wj + iUb,j}n
j=1, where i is the

imaginary unit, for b = 1, . . . , B.

6
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• MC-3: Compute ΨMC, B(Yj, Wj; β) = B−1∑B
b=1 Re{Ψ(Yj, W̃b,j; β)}, where Re(t)

denotes the real part of a complex-valued t.

• MC-4: Solve the following estimating equations for β,
n∑

j=1
ΨMC, B(Yj, Wj; β) = 0. (1.6)

Denote the resultant estimator as β̂MC.

By proving that E[Re{Ψ(Yj, W̃b,j; β)} | (Yj, Xj)] = Ψ(Yj, Xj; β), Novick and Ste-

fanski (2002) showed that Re{Ψ(Yj, W̃b,j; β)} is a corrected score that involves extra

noise due to its dependence on Ub,j. A corrected score that is free of the extra noise is

E[Re{Ψ(Yj, W̃b,j; β)} | (Yj, Wj)], which usually cannot be derived analytically. This

motivates MC-3 above, where one computes the average of {Re{Ψ(Yj, W̃b,j; β)}, b =

1, . . . , B} as an approximation of the aforementioned expectation. Clearly, this em-

pirical mean, ΨMC, B(Yj, Wj; β), is also a corrected score, referred to as the Monte

Carlo corrected score. Using the fact that β̂MC is an M-estimator that solves the

estimating equations in (1.6) constructed from an unbiased score function, Novick

and Stefanski (2002, Section 5) established the consistency and asymptotic normal-

ity of β̂MC. Finally, they demonstrated that, even when the assumption of U being

normally distributed or the true score function being entire is violated, β̂MC is still

often less biased than the counterpart naive estimator.

Corrected kernel method

Even though the Monte Carlo corrected score method enjoys certain degree of

robustness to the normality assumption on U , an alternative method that is well

justified for more general error distributions is desirable. This motivates us to cor-

rect the naive method from a different angle. Instead of correcting the naive score

function, we propose to correct the naive objective function for measurement error.

This is accomplished by constructing an unbiased estimator of the summand in (1.5),

7
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Kh(Y − β0 − β1X), based on (Y, W ). Since the objective function Qh(β) originates

from a kernel density estimator, such unbiased estimator is readily available in Car-

roll and Hall (1988) and Stefanski and Carroll (1990), where the authors considered

nonparametric density estimation in the presence of measurement error. Following

their construction of a deconvoluting kernel, one can show that, conditioning on

(Y, X), an unbiased estimator of Kh(Y − β0 − β1X) is K∗
h(Y − β0 − β1W ), where

K∗
h(t) = K∗(t/h)/h, and

K∗(t) = 1
2π

∫
e−ist ϕK(s)

ϕU(−β1s/h)ds, (1.7)

in which ϕK(s) is the Fourier transform of K(t), ϕU(s) is the characteristic function

of U that does not vanish, both assumed to be even, and the integration is over the

real line. Besides being used for density estimation in the works of Carroll, Hall, and

Stefanski, Fan and Truong (1993) also used a deconvoluting kernel similar to that

in (1.7) to construct a local constant estimator of E(Y | X = x) in the presence

of measurement error in X. Replacing the naive quantity, Kh(Y − β0 − β1W ), with

K∗
h(Y −β0−β1W ) gives the corrected objective function to be maximized with respect

to β,

Q∗
h(β) = n−1

n∑
j=1

K∗
h(Yj − β0 − β1Wj). (1.8)

We call this method the corrected kernel method and denote the resultant estimator

as β̂CK. One existing work that also corrects an objective function for measurement

error is Wang et al. (2012) in the context of linear quantile regression. In this work,

the authors derived a smooth function depending on (Y, W ), of which the conditional

expectation given (Y, X) approaches to the true objective function as the smoothing

parameter involved in the smooth function shrinks to zero.

Stefanski and Carroll (1990) studied the validity of the construction of (1.7) and its

properties for two types of measurement error distributions, namely ordinary smooth

error distributions and super smooth error distributions (Fan, 1991b). Their defini-

tions are given next.
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Definition 1. The distribution of U is ordinary smooth of order b if, as |t| → ∞,

d0|t|−b ≤ |ϕU(t)| ≤ d1|t|−b for some positive constants d0, d1 and b.

Definition 2. The distribution of U is super smooth of order b if, as |t| → ∞,

d0|t|b0 exp(−|t|b/d2) ≤ |ϕU(t)| ≤ d1|t|b1 exp(−|t|b/d2) for some positive constants d0,

d1, d2, b, b0, and b1.

For example, Laplace distributions are ordinary smooth of order b = 2, and normal

distributions are super smooth of order b = 2. We derive the asymptotic bias and

variance of β̂CK under each type of measurement error distributions, and also estab-

lish its asymptotic normality. These findings are summarized in the following two

theorems. Detailed proofs are provided in Appendices A and B. Lemmas referenced

in the theorems along with their proofs are given in Appendix C.

Denote by g(ϵ | x) the density of the mode residual, ϵ = Y − β0 − β1x, and

let X̃ = (1, X)T. The following three conditions on g(ϵ | x) and the covariate are

assumed for the theorems.

(C1) The ℓ-th partial derivative of g(ϵ | x) with respect to ϵ, g(ℓ)(ϵ | x), is

continuously differentiable around ϵ = 0, for ℓ = 0, 1, 2, 3, and g(1)(0 | x) = 0

for all x in the support of X.

(C2) As n → ∞, n−1∑n
j=1 g(0 | Xj)X̃jX̃

T
j and n−1∑n

j=1 g(3)(0 | Xj)X̃j converge

in probability, and n−1∑n
j=1 g(2)(0 | Xj)X̃jX̃

T
j converges in probability to a

negative definite matrix.

(C3) As n → ∞, n−1∑n
j=1 ∥X̃j∥4 = Op(1), where ∥ · ∥ denotes the Euclidean

norm.

Condition (C1) implies certain smoothness of g(ϵ | x) around its mode ϵ = 0, which

are mild assumptions typically required for kernel-based estimation of a function.

Condition (C2) indicates existence of several expectations relevant to the asymptotic

9
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mean and variance of the proposed estimator. Condition (C3) guarantees limits

limn→∞ n−1∑n
j=1 Xℓ

j , for ℓ ≤ 4, exist in probability. These assumptions are also

imposed in Yao and Li (2014) and are indeed mild assumptions satisfied in a wide

range of applications. Additional conditions that are required for proving the lemma

referenced in the following two theorems are provided in Appendix A. These include

conditions concerning K(t) and ϕU(t). Conditions on K(t) are imposed mainly to

guarantee integrability of functions of the forms tℓ1ϕ2
K(t) and tℓ1K(ℓ2)(t) for some

positive integers ℓ1 and ℓ2. Essentially, these conditions suggest that ϕK(t) and

K(ℓ2)(t) tail off fast enough as |t| → ∞, which can be easily satisfied by choosing

an adequate kernel such as the one we use for the corrected kernel method in the

simulation study reported in Section 1.5. Conditions imposed on ϕU(t) are also

mainly about how fast ϕ
(ℓ)
U (t) tail off as |t| → ∞ for some nonnegative integer ℓ.

Theorem 1. Under conditions (C1)–(C3) and conditions in Lemma C, there exists

a maximizer of Q∗
h(β), denoted by β̂CK, such that, as n → ∞ and h → 0,

(i) when U follows an ordinary smooth distribution of order b, if nh7+2b → 0, then

∥β̂CK − β∥ = O(h2) + Op

√ 1
nh3+2b

 ; (1.9)

(ii) when U follows a super smooth distribution of order b,

if exp(2|β1|bh−b/d2))/(nhb6) → 0, where b6 = max{3 − 2 min(b2, b3),

5 − 2 min(b2, b3, b4), 7 − 2 min(b2, b3, b4, b5)}, in which bℓ, for ℓ = 2, 3, 4, 5, are

defined in Lemma C, then

∥β̂CK − β∥ = O(h2) + Op

exp
(

|β1|b

d2hb

)√
1

nh3−2 min(b2,b3)

 . (1.10)

The error rates presented in Theorem 1 combine the rate of bias, appearing in the

big-O part of (1.9) and (1.10), and the rate of standard deviation, as in the big-Op part

of (1.9) and (1.10), of β̂CK. Three observations are worth pointing out regarding these

10
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rates. First, the bias rate is not affected by measurement error, and coincides with the

bias rate of Yao and Li’s estimator in the absence of measurement error (Yao and Li,

2014, Theorem 2.2). Second, compared to the variance rate of Yao and Li’s estimator

in the absence of measurement error (Yao and Li, 2014, Theorem 2.2), the variance

rates here are inflated due to measurement error. By setting b = 0, the variance rates

suggested by (1.9) and (1.10) reduce to Op{1/(nh3)}, which is the variance rate of Yao

and Li’s estimator. Setting b = 0 is equivalent to setting σ2 = 0, which leads to error-

free covariate. Third, comparing (1.9) and (1.10) reveals that the convergence rate

of β̂CK in the presence of super smooth measurement error is much slower than that

when U is ordinary smooth. This is in line with the findings in density estimation

(Carroll and Hall, 1988; Stefanski and Carroll, 1990), local polynomial estimation

in mean regression (Fan and Truong, 1993; Delaigle et al., 2009; Huang and Zhou,

2017), and nonparametric mode regression (Zhou and Huang, 2016) in the presence

of different types of measurement error.

Moments of certain functions that involve Fourier transform are derived in Ap-

pendix C to show Theorem 1. Results regarding these moments, along with strategies

for deriving them, are also useful for establishing the asymptotic normality of β̂CK,

although additional assumptions listed under Conditions N in Appendix A in the

supplementary materials are needed as well.

Theorem 2. Under conditions N, besides the same assumptions imposed in Theorem

1, for the maximizer of Q∗
h(β), β̂CK, that satisfies the properties in Theorem 1,

(i) if U follows an ordinary smooth distribution of order b,

√
nh3+2b

(
β̂CK − β − h2µ2J

∗−1Q/4
)

d−→ N(0, J∗−1KLJ∗−1); (1.11)

where KL is a constant matrix, Q = limn→∞ n−1∑n
j=1 E{g(3)(0|Xj)X̃j}, and

J∗ = limn→∞ n−1∑n
j=1 E{g(2)(0|Xj)X̃jX̃

T
j };

11
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(ii) if U follows a super smooth distribution of order b,
{
Var(β̂CK)

}−1/2 (
β̂CK − β − h2µ2J

∗−1Q/4
)

d−→ N(0, 1), (1.12)

where Var(β̂CK) = O[exp{2|β1|b/(d2h
b)}/{nh3−2 min(b2,b3)}], and Σ−1/2 denotes

the inverse of the positive definite square root of a positive definite matrix Σ.

1.4 Bandwidth selection

Kernel-based methods are typically sensitive to the choice of bandwidths. To

address the complication in bandwidth selection due to measurement error, Delaigle

and Hall (2008) developed a strategy for smoothing parameter selection that combines

simulation-extrapolation (SIMEX) (Cook and Stefanski, 1994; Stefanski and Cook,

1995) and cross validation. We apply this strategy to choose h following the algorithm

described next, where we aim to choose an h that optimizes inference for β in some

sense. Generically denote by β̂h an estimator of β under consideration with the

bandwidth fixed at h based on observed data {(Yj, Wj)}n
j=1.

• SM-1: Generate M sets of further contaminated covariate data, {W ∗
m,j = Wj +

U∗
m,j}n

j=1, for m = 1, . . . , M , where {U∗
m,j, j = 1, . . . , n}M

m=1 are independent

random errors generated from fU(u).

• SM-2: For m = 1, . . . , M , denote by β̂∗
h,m the estimate of β based on data

{(Yj, W ∗
m,j)}n

j=1 using the method under consideration. Find

h1 = arg min
h>0

M−1
M∑

m=1
(β̂∗

h,m − β̂h)TS−1
h,1(β̂∗

h,m − β̂h),

where Sh,1 is the sample variance-covariance matrix of {β̂∗
h,m − β̂h}M

m=1.

• SM-3: Generate M sets of even further contaminated covariate data, {W ∗∗
m,j =

W ∗
m,j + U∗∗

m,j}n
j=1, for m = 1, . . . , M , where {U∗∗

m,j, j = 1, . . . , n}M
m=1 are inde-

pendent random errors generated from fU(u), which are also independent of

{U∗
m,j, j = 1, . . . , n}M

m=1.

12
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• SM-4: For m = 1, . . . , M , denote by β̂∗∗
h,m the estimate of β based on data

{(Yj, W ∗∗
m,j)}n

j=1 using the method under consideration. Find

h2 = arg min
h>0

M−1
M∑

m=1
(β̂∗∗

h,m − β̂∗
h,m)TS−1

h,2(β̂∗∗
h,m − β̂∗

h,m),

where Sh,2 is the sample variance-covariance matrix of {β̂∗∗
h,m − β̂∗

h,m}M
m=1.

• SM-5: Set the selected bandwidth as h = h2
1/h2.

The criterion we minimize in SM-2 and SM-4 is motivated by an ideal, or theo-

retical optimal, bandwidth given by hideal = arg minh>0 E{(β̂h − β)TΣ−1
h (β̂h − β)},

where Σh is the variance-covariance matrix of β̂h. The rationale behind this SIMEX

procedure is that, as shown in Delaigle and Hall (2008), log(hideal) − log(h1) ≈

log(h1) − log(h2) when σ2 is small. And thus the value of h from SM-5 is a sen-

sible approximation of hideal. Besides Delaigle and Hall (2008), Wang et al. (2012)

also used a similar strategy to select the smoothing parameter in their problem of

linear quantile regression with covariate measurement error.

1.5 Empirical Evidence

Simulation design

To assess finite sample performance of the proposed estimators, we design compar-

ative experiments where β̂NV, β̂MC (with B = 1000), and β̂CK are obtained based on

simulated error-prone data {(Yj, Wj)}n
j=1, as well as β̂YL based on the corresponding

error-free data {(Yj, Xj)}n
j=1. The fourth estimator serves as a gold standard in the

sense that estimators, naive or non-naive, based on error-prone data are expected to

be inferior in some regard than this estimator. Comparing the first three estimators

with this reference estimator can shed light on how measurement error compromise

the naive estimator, and whether or not the two proposed non-naive estimators im-

prove over the naive estimator.
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The kernel K(t) used for obtaining β̂NV, β̂MC, and β̂YL is the standard normal den-

sity; and we use the kernel of which the Fourier transform is ϕK(t) = (1− t2)3I(−1 ≤

t ≤ 1) for β̂CK. The choice of kernel for the corrected kernel method is in part

dictated by the technical conditions on ϕK(t) that arise from deriving asymptotic

properties of β̂CK. To mitigate the effects of data-driven bandwidth selection on

the proposed estimators, in the first half of simulation, we use an approximation of

hideal given by ĥideal = arg minh>0(β̂h − β)TΣ̂−1
h (β̂h − β), where Σ̂h is a bootstrap

estimate of Σh based on 100 bootstrap samples. Clearly, ĥideal cannot be computed

in practice since β is unknown in reality. In the second half of the simulation, we

implement the SIMEX method described in Section 1.4, with M = 10, to select h for

the proposed estimators. To preserve the integrity of β̂YL, we run the Matlab code

kindly provided by Professor Yao to compute β̂YL and β̂NV, including their choice of

bandwidth based on minimizing an estimate of the asymptotic mean squared error

of Yao and Li’s estimator of β.

For ease of comparison, we follow the model setting in the simulation study pre-

sented in Yao and Li (2014) to generate error-free data. More specifically, for each of

the two sample sizes, n = 200 and 400, the true covariate values {Xj}n
j=1 are indepen-

dent realizations from uniform(0, 1). Given Xj, the response is generated according

to Yj = 1 + 3Xj + (1 + 2Xj)ej, for j = 1, . . . , n, where {ej}n
j=1 are independent er-

rors from 0.5N(−1, 2.52) + 0.5N(1, 0.52). For this error distribution, eM(x) ≈ 1 for

all x ∈ [0, 1], and thus yM(x) ≈ 2 + 5x. Ignoring rounding error, we have the true

mode regression coefficients β = (2, 5)T. The error contaminated covariate measures

{Wj}n
j=1 are generated according to (1.2), with U following a Laplace distribution

and a normal distribution, respectively, whose mean is zero and variance σ2 is set

at four levels to achieve reliability ratios λ ranging from 0.75 to 0.9 at increments of

0.05.
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Simulation results

Under each of sixteen model settings resulting from the combinations of n-fU(u)-

λ, 300 Monte Carlo replicate data sets of the form {(Yj, Xj, Wj)}n
j=1 are generated,

producing 300 sets of estimates, {β̂NV, β̂MC, β̂CK, β̂YL}, among which β̂YL is not af-

fected by the change in fU(u) or λ. Figure 1.1 presents the boxplots of these estimates

when n = 200 for the case with Laplace measurement error when the approximated

ideal bandwidth is used for β̂MC and β̂CK. Figure 1.2 depicts the boxplots of the

estimates when n = 200, U is normal, and the approximated ideal bandwidth is used

for β̂MC and β̂CK. Figures 1.3 and 1.4 provide the counterpart boxplots when h is

chosen by the SIMEX method for β̂MC and β̂CK.

Overall, results for the two proposed methods that account for measurement er-

ror with bandwidths selected via the SIMEX method are very similar to those when

the approximated ideal bandwidths are used. Except for higher variability, the two

proposed estimates are comparable with the estimates obtained in the absence of

measurement error, β̂YL; and the naive estimate, β̂NV = (β̂NV,0, β̂NV,1)T, is compro-

mised by measurement error in contrast. Under the current model setting, β̂NV,1

attenuates more towards null as error contamination in the covariate is more severe,

that is, as λ decreases; and β̂NV,0 deviates more from the truth from above.

Between the two proposed estimators, β̂MC appears to be more variable than β̂CK,

especially in the presence of Laplace measurement error. This is expected because

the Monte Carlo corrected score involves simulated pseudo measurement error. This

source of variability can be more prominent when a small B is used to construct the

Monte Carlo corrected score, ΨMC, B. But increasing B after certain point, say, going

beyond the current level (1000) in the presented simulation experiments, becomes less

profitable in terms of efficiency gain, especially considering the added computational

burden with a much larger B. Another reason for the observed higher variability

when U follows a Laplace distribution can be due to applying the Monte Carlo cor-
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Figure 1.1: Boxplots of estimates of β0 (on the left panels) and estimates of β1 (on
the right panels) when U is Laplace measurement error at four levels of reliability
ratios (from the top row to the bottom row), λ = 0.9, 0.85, 0.8, 0.75. Within each
panel, the four estimates (from left to right) result from the naive method (NAIVE),
the Monte Carlo corrected score method (MCCS), the corrected kernel method (CK),
and Yao and Li’s method (YL) in the absence of measurement error, respectively. The
approximated theoretical optimal bandwidths are used for the Monte Carlo correcte
score method and the corrected kernel method.
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Figure 1.2: Boxplots of estimates of β0 (on the left panels) and estimates of β1 (on
the right panels) when U is normal measurement error at four levels of reliability
ratios (from the top row to the bottom row), λ = 0.9, 0.85, 0.8, 0.75. Within each
panel, the four estimates (from left to right) result from the naive method (NAIVE),
the Monte Carlo corrected score method (MCCS), the corrected kernel method (CK),
and Yao and Li’s method (YL) in the absence of measurement error, respectively. The
approximated theoretical optimal bandwidths are used for the Monte Carlo correcte
score method and the corrected kernel method.
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Figure 1.3: Boxplots of estimates of β0 (on the left panels) and estimates of β1 (on
the right panels) when U is Laplace measurement error at four levels of reliability
ratios (from the top row to the bottom row), λ = 0.9, 0.85, 0.8, 0.75. Within each
panel, the four estimates (from left to right) result from the naive method (NAIVE),
the Monte Carlo corrected score method (MCCS), the corrected kernel method (CK),
and Yao and Li’s method (YL) in the absence of measurement error, respectively.
Bandwidths chosen by the simulation-extrapolation method are used for the Monte
Carlo corrected score method and the corrected kernel method.
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Figure 1.4: Boxplots of estimates of β0 (on the left panels) and estimates of β1 (on
the right panels) when U is normal measurement error at four levels of reliability ratios
(from the top row to the bottom row), λ = 0.9, 0.85, 0.8, 0.75. Within each panel,
the four estimates (from left to right) result from the naive method (NAIVE), the
Monte Carlo corrected score method (MCCS), the corrected kernel method (CK),
and Yao and Li’s method (YL) in the absence of measurement error, respectively.
Bandwidths chosen by the simulation-extrapolation method are used for the Monte
Carlo corrected score method and the corrected kernel method.
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rected score method when the normality assumption on U is violated. Although

the corrected kernel method has neither aforementioned concern, computing the de-

convoluting kernel requires some care as the integral that defines K∗(t) in (1.7) can

be computationally challenging, especially in the presence of normal measurement

error (Delaigle and Gijbels, 2007). We use the fast Fourier transforms (Bailey and

Swarztrauber, 1994) to compute these integrals, which can still be problematic at

times when U is normal. To alleviate numerical inaccuracy in the numerical integra-

tion, we follow the suggestion in Meister (2004) and replace the normal characteristic

function with the Laplace characteristic function in (1.7) even when U actually fol-

lows a normal distribution. The presented numerical results associated with β̂CK in

this section are obtained using this treatment. We observe in our extensive numer-

ical study that, when the numerical integration using fast Fourier transforms goes

through smoothly with ϕU(s) as the normal characteristic function, using a Laplace

characteristic function instead does not cause noticeable changes in β̂CK; and using

the latter often leads to smoother numerical implementation. The robustness to and

the benefit of Laplace measurement error assumption was noted and investigated by

Meister (2004) and Delaigle (2008). For instance, Delaigle (2008) showed that, if the

assumed error distribution and the true error distribution match in regard to the

first two moments, the bias due to misspecifying the error distribution is of order

O(h2) + o(σ2) when a second-order kernel is used in a kernel density estimator.

Tables 1.1 and 1.2 present Monte Carlo averages of the four considered estimates

across 300 replicates along with their empirical standard errors for λ ∈ {0.75, 0.8}

and λ ∈ {0.85, 0.9}, respectively. Besides reinforcing the findings from Figures 1.1–

1.4 that, compared to the naive estimator, the two proposed estimators are less

compromised by measurement error and are closer to the benchmark estimator, these

results also show that the performance of the proposed estimators improve in both

accuracy and precision as the sample size increases. This is observed even for the
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Monte Carlo corrected score method in the presence of Laplace measurement error,

a case this method is not designed for.

Table 1.1: Monte Carlo averages of four sets of estimates over 300 Monte Carlo
replicates when λ = 0.75, 0.80. Numbers in parentheses underneath the averages are
empirical standard errors associated with the averages. The truth is (β0, β1) = (2, 5).
MCCS, Monte Carlo corrected score method; CK, corrected kernel method; YL, Yao
and Li’s method in the absence of measurement error

λ = 0.75 λ = 0.80
n = 200 n = 400 n = 200 n = 400

Method β0 β1 β0 β1 β0 β1 β0 β1
U ∼ Laplace(0, σ2)

Naive 2.26 3.82 2.29 3.85 2.18 4.04 2.22 4.05
(0.02) (0.04) (0.01) (0.03) (0.02) (0.04) (0.01) (0.03)

MCCS 1.96 4.77 1.84 5.08 1.86 5.06 1.80 5.18
(0.04) (0.08) (0.03) (0.07) (0.03 ) (0.07) (0.02 ) (0.05 )

CK 1.72 5.14 1.72 5.19 1.74 5.14 1.73 5.18
(0.03) (0.05) (0.02) (0.04) (0.02) (0.05) (0.02) (0.03)

U ∼ N(0, σ2)
Naive 2.21 3.88 2.27 3.92 2.17 4.07 2.18 4.16

(0.02) (0.05) (0.01) (0.03) (0.02) (0.05) (0.01) (0.03)
MCCS 2.02 4.62 1.92 4.88 1.75 5.18 1.78 5.17

(0.04) (0.09 ) ( 0.02 ) (0.04 ) (0.02) (0.05 ) (0.03) (0.06)
CK 1.77 5.02 1.79 4.97 1.80 4.99 1.84 4.99

(0.02) (0.04) (0.02) (0.03) (0.02) (0.04) (0.02) (0.04)
YL 1.83 5.08 1.87 5.05 1.83 5.08 1.87 5.05

(0.01) (0.03) (0.01) (0.02) (0.01) (0.03) (0.01) (0.02)

To this end, our focus has been estimating β. Because modes can be used to

predict the outcome Y , we also compare predictions using estimated modes from the

above three linear mode regression methods and the local linear mode estimation

using the nonparametric method developed by Zhou and Huang (2016). Table 1.3

provides such comparison in terms of the empirical coverage probability of a prediction

interval (band) of width cσe centered around an estimated mode line (or curve) from

a considered method across 300 Monte Carlo replicates, for c = 0.1, 0.2, 0.5. Here,

σe is the standard deviation of ej, which is around 2 in the simulation. According to

Table 1.3, all four considered methods applying to error-prone data yield prediction
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Table 1.2: Monte Carlo averages of four sets of estimates over 300 Monte Carlo
replicates when λ = 0.85, 0.90. Numbers in parentheses underneath the averages are
empirical standard errors associated with the averages. The truth is (β0, β1) = (2, 5).
MCCS, Monte Carlo corrected score method; CK, corrected kernel method; YL, Yao
and Li’s method in the absence of measurement error

λ = 0.85 λ = 0.9
n = 200 n = 400 n = 200 n = 400

Method β0 β1 β0 β1 β0 β1 β0 β1
U ∼ Laplace(0, σ2)

Naive 2.08 4.34 2.10 4.37 2.01 4.54 2.04 4.58
(0.02) (0.04) (0.01) (0.03) (0.02) (0.04) (0.01) (0.03)

MCCS 1.92 5.02 1.93 4.98 1.93 5.02 1.94 5.03
(0.02) (0.05) (0.02) (0.04) (0.02) (0.04) (0.02) (0.04)

CK 1.83 5.05 1.91 5.05 1.86 5.09 1.91 5.05
(0.02) (0.04) (0.01) (0.04) (0.02) (0.03) (0.01) (0.03)

U ∼ N(0, σ2)
Naive 2.08 4.31 2.11 4.33 2.02 4.50 2.03 4.54

(0.02) (0.04) (0.01) (0.03) (0.02) (0.03) (0.01) (0.03)
MCCS 1.78 5.13 1.84 5.10 1.78 5.20 1.84 5.11

(0.02) (0.04) (0.01) (0.03) (0.02) (0.04) (0.01) (0.03)
CK 1.88 5.05 1.89 4.95 1.90 5.06 1.94 4.97

(0.02) (0.05) (0.01) (0.03) (0.02) (0.04) (0.01) (0.03)
YL 1.83 5.08 1.87 5.05 1.83 5.08 1.87 5.05

(0.01) (0.03) (0.01) (0.02) (0.01) (0.03) (0.01) (0.02)

intervals (bands) with similar empirical coverage probabilities as those from Yao

and Li’s linear mode regression method applying to error-free data. The observed

similarity may not be surprising because prediction based on mean regression is also

less affected by measurement error in covariates when compared to how covariate

effects estimation is affected (Buonaccorsi, 1995). To have a more close-up comparison

of estimated modes themselves, Table 1.4 presents the Monte Carlo averages of the

point-wise error associated with each method, |the estimated yM(x) − yM(x)|, at x =

0.5, 0.9. From this more close-up comparison, one can see that using error-prone

data for mode estimation tends to produce more bias than when one uses error-

free data; but our two proposed methods substantially alleviate the bias seen in

the naive mode estimates. The nonparametric method shows no advantage when
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point-wise error of mode estimation is concerned, especially when the covariate value

is near the boundary, e.g., x = 0.9. We acknowledge that the current simulation

setting is designed for linear mode regression, with data simulated from models with

a linear mode function. Nonparametric mode regression makes no assumption on the

functional form of the conditional mode function, and thus it is expect to exhibit

higher variability and less accuracy in estimating the mode than methods that take

into account a simple (and true) functional form. Scenarios where the data generating

process involves a nonlinear mode function are where one can benefit from employing

the nonparametric method, which are scenarios beyond the scope of the current study.

Table 1.3: Monte Carlo averages of proportions of observed responses captured by
a prediction interval (band) of width cσe, for c = 0.1, 0.2, 0.5, associated with each
method across 300 Monte Carlo replicates. Numbers in parentheses underneath the
averages are 100×(empirical standard error) associated with the averages. MCCS,
Monte Carlo corrected score method; CK, corrected kernel method; NMR, Zhou and
Huang’s nonparametric mode regression; YL, Yao and Li’s method in the absence of
measurement error

λ = 0.85 λ = 0.9
n = 200 n = 400 n = 200 n = 400

Method 0.1σe 0.2σe 0.5σe 0.1σe 0.2σe 0.5σe 0.1σe 0.2σe 0.5σe 0.1σe 0.2σe 0.5σe

U ∼ Laplace(0, σ2)
Naive 0.09 0.18 0.39 0.09 0.18 0.40 0.09 0.18 0.40 0.09 0.18 0.40

(0.07) (0.11) (0.15) (0.07) (0.10) (0.15) (0.07) (0.10) (0.14) (0.06) (0.08) (0.11)
MCCS 0.09 0.18 0.40 0.09 0.18 0.40 0.09 0.18 0.40 0.09 0.18 0.40

(0.06) (0.08) (0.11) (0.06) (0.08) (0.09) (0.06) (0.08) (0.10) (0.05) (0.07) (0.10)
CK 0.09 0.18 0.40 0.09 0.18 0.40 0.09 0.18 0.40 0.09 0.19 0.40

(0.06) (0.09) (0.11) (0.06) (0.08) (0.10) (0.05) (0.07) (0.10) (0.05) (0.07) (0.10)
NMR 0.09 0.17 0.38 0.09 0.17 0.38 0.09 0.17 0.38 0.09 0.17 0.38

(0.06) (0.09) (0.13) (0.06) (0.08) (0.11) (0.06) (0.09) (0.013) (0.05) (0.08) (0.11)
U ∼ N(0, σ2)

Naive 0.09 0.18 0.39 0.09 0.18 0.40 0.09 0.18 0.40 0.09 0.18 0.40
(0.07) (0.11) (0.17) (0.06) (0.10) (0.15) (0.06) (0.09) (0.12) (0.06) (0.09) (0.12)

MCCS 0.09 0.18 0.40 0.09 0.18 0.40 0.09 0.18 0.40 0.09 0.18 0.40
(0.06) (0.08) (0.11) (0.05) (0.08) (0.10) (0.06) (0.08) (0.09) (0.05) (0.07) (0.09)

CK 0.09 0.18 0.40 0.09 0.18 0.40 0.09 0.18 0.40 0.10 0.19 0.40
(0.06) (0.09) (0.12) (0.05) (0.07) (0.10) (0.06) (0.09) (0.11) (0.05) (0.07) (0.09)

NMR 0.09 0.17 0.38 0.09 0.17 0.38 0.09 0.17 0.38 0.09 0.17 0.38
(0.06) (0.09) (0.13) (0.06) (0.08) (0.11) (0.06) (0.09) (0.13) (0.06) (0.08) (0.11)

YL 0.09 0.18 0.40 0.09 0.19 0.41 0.09 0.18 0.40 0.09 0.19 0.41
(0.06) (0.10) (0.13) (0.05) (0.07) (0.10) (0.06) (0.10) (0.13) (0.05) (0.07) (0.10)
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Table 1.4: Monte Carlo averages of point-wise errors, |estiamted mode−true mode|,
associated with each method when x = 0.5, 0.9 across 300 Monte Carlo replicates.
Numbers in parentheses are empirical standard error associated with the averages.
MCCS, Monte Carlo corrected score method; CK, corrected kernel method; NMR,
Zhou and Huang’s nonparametric mode regression; YL, Yao and Li’s method in the
absence of measurement error

λ = 0.85 λ = 0.9
n = 200 n = 400 n = 200 n = 400

Method x = 0.5 x = 0.9 x = 0.5 x = 0.9 x = 0.5 x = 0.9 x = 0.5 x = 0.9
U ∼ Laplace(0, σ2)

Naive 0.28 (0.01) 0.53 (0.02) 0.25 (0.01) 0.51 (0.02) 0.27 (0.01) 0.47 (0.02) 0.20 (0.01) 0.38 (0.01)
MCCS 0.22 (0.01) 0.45 (0.03) 0.16 (0.02) 0.33 (0.03) 0.18 (0.01) 0.35 (0.03) 0.15 (0.01) 0.30 (0.02)

CK 0.20 (0.01) 0.35 (0.02) 0.17 (0.01) 0.26 (0.01) 0.21 (0.01) 0.32 (0.01) 0.18 (0.01) 0.28 (0.01)
NMR 0.66 (0.01) 1.10 (1.12) 0.65 (0.01) 1.24 (0.12) 0.68 (0.02) 1.31 (0.12) 0.66 (0.01) 0.58 (0.15)

U ∼ N(0, σ2)
Naive 0.28 (0.01) 0.59 (0.02) 0.25 (0.01) 0.54 (0.02) 0.25 (0.01) 0.46 (0.02) 0.21 (0.01) 0.39 (0.02)
MCCS 0.18 (0.01) 0.37 (0.02) 0.14 (0.01) 0.24 (0.01) 0.18 (0.01) 0.33 (0.02) 0.12 (0.01) 0.23 (0.01)

CK 0.21 (0.01) 0.33 (0.02) 0.21 (0.01) 0.26 (0.01) 0.20 (0.01) 0.40 (0.02) 0.18 (0.01) 0.25 (0.01)
NMR 0.64 (0.01) 0.95 (0.09) 0.34 (0.02) 0.52 (0.08) 0.63 (0.02) 1.28 (0.14) 0.68 (0.01) 1.05 (0.11)
YL 0.14 (0.01) 0.21 (0.01) 0.14 (0.01) 0.22 (0.01) 0.14 (0.01) 0.21 (0.01) 0.14 (0.01) 0.22 (0.01)

1.6 Application to Dietary Data

In this section, we apply the proposed methods to a dietary data set from the

Women’s Interview Survey of Health. The data are from n = 271 subjects, each

completing a food frequency questionnaire (FFQ) and six 24-hour food recalls on

randomly selected days. We focus on studying the impact of the long-term usual

intake (X) on the FFQ intake measured as the percent calories from fat (Y ) (Carroll

et al., 1997). Since the long-term intake cannot be measured directly, and the 24-hour

recalls can be viewed as error-contaminated surrogates of it, we used the average of

these recalls from each subject as a surrogate (W ) of this subject’s long-term intake.

Figure 1.5 provides the histogram of FFQ intake and the scatter plot of it versus the

24-hour food recalls. The histogram indicates an underlying skewed distribution, and

the scatter plot suggests existence of outliers in the observed data. These are both

features that suggest mode regression can provide valuable information regarding the

association between a response and a covariate that mean regression may not capture.

For illustration purposes, we consider a linear mode regression model for the

mode of Yj given Xj, where Xj is not observed but its error-contaminated surrogate
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Figure 1.5: The histogram (on the left panel) of food frequency questionnaire intake
and the scatter plot (on the right panel) of this quantity versus a surrogate of long-
term intake for the dietary data.

Wj is, where Wj = ∑6
k=1 Wj,k/6, in which Wj,k is subject j’s kth food recall, for

k = 1, . . . , 6 and j = 1, . . . , 271. Using the six replicate measures for each underlying

Xj, we estimate the variance of measurement errors associated with Wj via one sixth

of ∑n
j=1

∑6
k=1(Wj,k − Wj)2/(5n), following equation (4.3) in Carroll et al. (2006).

This gives an estimate of the measurement error variance as σ̂2 = 0.12, and the

corresponding estimated reliability ratio being 0.73.

We carry out the linear mode regression analysis using the naive method, the

Monte Carlo corrected score method, the corrected kernel method assuming Laplace

and normal measurement error, respectively, and we also implement the local linear

mode estimation as the only fully nonparametric method. Table 1.5 presents the

estimated regression coefficients from three linear mode regression methods. These

results suggest that both proposed methods produce estimates of the covariate effect,

β1, that imply a stronger association between the FFQ intake and the long-term

intake than the estimate from the naive method does. In particular, compared to
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the naive estimate, the estimated covariate effect from the Monte Carlo corrected

score method increases by 29%, and the estimates from the corrected kernel method

increase by 38% and 34% when assuming Laplace measurement error and normal

measurement error, respectively. This also gives an example where using the Laplace

characteristic function and the normal characteristic function in the corrected kernel

method yield very similar estimates. Figure 1.6 depicts three of these estimated

mode regression lines, omitting the one from the corrected kernel method under the

normality assumption, and the estimated mode curve obtained by applying the local

linear estimation in Zhou and Huang (2016). Computer codes for implementing the

two proposed method for this data set are provided in Appendice D and E.

Table 1.5: Regression coefficient estimates in the linear mode regression model
from the naive method, the Monte Carlo corrected score method, and the corrected
kernel method (assuming Laplace and normal U , respectively) using the dietary data.
Numbers in parentheses are estimated standard deviations of the regression coefficient
estimates resulting from 200 bootstrap samples. MCCS, Monte Carlo corrected score
method; CK-Laplace, corrected kernel method assuming Laplace U ; CK-Normal,
corrected kernel method assuming normal U

Method β0 β1
Naive −0.27 (0.10) 0.36 (0.11)
MCCS −0.10 (0.05) 0.48 (0.13)

CK-Laplace −0.07 (0.05) 0.50 (0.12)
CK-Normal −0.09 (0.06) 0.49 (0.13)

1.7 Discussion

In this chapter, we propose two methods to infer the regression coefficients in a lin-

ear mode model for a response given an error-prone covariate. The resultant inference

for the covariate effect significantly improve over the naive inference from applying

Yao and Li’s method without accounting for measurement error. As demonstrated

in the real data analysis in Section 1.6, estimating the measurement error variance is
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Figure 1.6: Dietary data overlaid with the estimated mode regression line from
naively applying Yao and Li’s method (green dashed line), the Monte Carlo corrected
score method (cyan dot-dashed line), the corrected kernel method assuming Laplace
measurement error (red solid line), and a local linear estimate of the mode curve
(blue two-dashed line).

trivial when replicate measures of each underlying true covariate value are available.

This treatment of unknown σ2 has been a routine practice in the measurement error

literature, where researchers typically observe little impact of estimating σ2 on the

final inference for covariate effects. The measurement error variance is the only piece

of information regarding fU(u) required for implementing the Monte Carlo corrected

score method since normal U is assumed for this method. To implement the corrected

kernel method, the characteristic function of U , ϕU(t), is needed, which can also be

easily estimated using replicate measures (Delaigle et al., 2008). Moreover, as noted

in our simulation study and by several other authors (Meister, 2004; Delaigle, 2008;

Delaigle et al., 2009; Zhou and Huang, 2016), simply setting ϕU(t) as the Laplace

characteristic function works well in most scenarios, which frees one from estimating

27



www.manaraa.com

the characteristic function altogether.

Both proposed methods can easily incorporate multiple covariates in the linear

mode model. Indeed, Yao and Li’s method is developed more generally with mul-

tivariate covariates, and the Monte Carlo corrected score method entails evaluating

the score function used in Yao and Li’s method at simulated contaminated covariate

data, hence one only needs to revise MC-1 in the algorithm in Section 1.3 accordingly

to implement the Monte Carlo corrected score method with multivariate covariates.

To implement the corrected kernel method when there are p(> 1) covariates, some

or all of which are prone to nondifferntial measurement error, one uses a multivariate

characteristic function of U = (U1, . . . , Up)T in (1.7) evaluated at −βT
1 s/h, bearing

in mind that ϕUℓ
(t) = 1 if the ℓth covariate is error-free, for ℓ ∈ {1, 2, . . . , p}.

Although we impose a linear functional form for the mode of Y given X = x, the

mode residual distribution, g(ϵ | x), is left unspecified, except for that its mode is

zero and some mild conditions imposed on it for the study of asymptotics. Hence, the

proposed methods are broadly applicable even when one lacks a parametric model

for fY |X(y | x). This makes these methods semiparametric in nature. Chapter 2

is to involve semiparametric components in the specification of yM(x) to relax the

linear assumption made in the current study. Yao and Xiang (2016) considered a local

polynomial mode estimation that mimics the idea of local polynomial mean estimation

(Fan and Gijbels, 1996), and also considered a nonparametric varying coefficient mode

regression model. Zhao et al. (2014) proposed a variable selection method based on

a partially linear varying coefficient mode regression model. These works, and other

existing works on semiparametric mode regression, all assume error-free covariates.

We will consider in Chapter 3 partially linear mode regression in the presence of

covariate measurement error. To prepare for our exploration on partially linear mode

regression with error-prone covariates, we next describe in Chapter 2 methodologies

for partially linear mode regression in the absence of covariate measurement error.
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Chapter 2

Partially Linear Mode Regression

Among the broad range of statistical regression models exploited for studying the

association between a response Y and covariates of interest, fully parametric regres-

sion models can yield highly efficient inference results, especially when the parametric

specifications are parsimonious and correct. But they may lead to misleading infer-

ence outcomes when some parametric assumptions are violated. Fully nonparametric

regression models are less vulnerable to model misspecification, but they typically suf-

fer from low precision, with precision quickly deteriorating as the number of covariates

increases. Partially linear models offer an appealing compromise between parametric

models and nonparametric models. They are attractive choices of models when one

can envision two separate sets of potentially influential covariates, denoted by T and

X, respectively, based on subject-matter knowledge or other scientific grounds, so

that the association between Y and X can be well represented by a linear model,

whereas the effect of T on Y has an unknown functional form that enters the re-

gression model additively. Among the first to consider such models, Robert F. et al.

(1986) employed a partially linear model for investigating effects of weather on elec-

tricity demand, where they set T as temperature, and included household income,

monthly price of electricity, and other factors in X that are assumed to relate to

electricity usage linearly after the possibly nonlinear effect of T on Y is accounted

for. The current literature on partially linear models are mainly confined to estimat-

ing the conditional mean function of Y (Hyndman et al., 1996; Hardle et al., 2000).

There also exists a large body of work on estimating the conditional quantile of the
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response Y (He and Liang, 2000; Wang et al., 2009) in the partially linear model

framework.

As yet another important location measure, partially linear models for the condi-

tional mode of a response is far less investigated, even though linear mode regression

models (Yao and Li, 2014) and nonparametric mode regression models (Yao et al.,

2012; Chen et al., 2016; Yao and Xiang, 2016) have been studied and adopted in a

host of applications, as illustrated in Einbeck and Tutz (2006); Bamford et al. (2008)

and Huang and Yao (2012), just to name a few. The only work we are aware of that

involves mode regression in a partially linear model is Zhao et al. (2013) and Zhao

et al. (2014), where the authors proposed variable selection methods in partially linear

varying coefficient models based on mode regression. Instead of conducting variable

selection, in this chapter we are more interested in estimating the conditional mode

of the response Y by estimating both parametric and nonparametric part. Follow-

ing the methodology in Zhao et al. (2014), first, we propose a one-stage method to

estimate the parametric and nonparametric part simutanously. Based on assump-

tions in section 2.3, a two-stage method is proposed to estimate the parametric and

nonparametric part sequentially.

2.1 Data and Models

Suppose that the observed data consist of n independent data points, {(Yj, Tj,

Xj)}n
j=1, where the covariate values, {Xj}n

j=1 and {Tj}n
j=1, are scalar covariate values,

and {Yj}n
j=1 are response variable values. The distribution of Y given (X, T ) is

specified by

Y = g∗(T ) + m(X) + σ(X, T )ϵ, (2.1)

where E(ϵ|X, T ) = 0, and g∗(T ) is an unknown smooth function of T , m(X) is a

function of X and σ(X, T ) is a function of X and T . If m(X) is a linear function
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of X, σ(X, T ) is a linear function of X and Mode(ϵ|X, T ) is constant free of (T, X),

then (2.1) implies a partially linear model for the mode of Y given by,

yM(x, t) = Mode(Yj|Xj = x, Tj = t) = g∗(t) + β0 + β1x, for j = 1, · · · , n, (2.2)

where β = (β0, β1)T is the coefficient of the parametric part.

Note that, g∗(T ) in (2.2) is an unspecified smooth function. Zhao et al. (2014)

proposed an estimation and variable selection procedure based on mode regression,

where the nonparametric function is estimated by B-spline basis. He et al. (2002)

considered an extension of M-estimators in semiparametirc models, where B-spline is

employed to approximate the nonparametric function. By using B-spline, estimating

the nonparametric function boils down to estimating the coefficients of basis functions.

Following the method in Zhao et al. (2014) and He et al. (2002), we use B-spline

to approximate g∗(T ). Once the spline basis functions are obtained, both linear

parameters and the coefficients of spline basis functions can be estimated by revising

the method in Chapter 1. For completeness, we give a brief review of the B-splines

methodology in the following section.

2.2 B-spline Methods

As a method to approximate a smooth function, B-spline provides a local support

based on basis functions (Boor, 2001). Although the local polynomial estimation

method (Yao et al., 2012) gives another way to approximate a smooth function, Zhao

et al. (2014) pointed out that the heavy computation involved in local polynomial

estimation is a big concern, especially for high dimensional semiparametric partially

linear varying coefficient models. In contrast, a small number of knots in B-splines can

often provide an excellent approximation. This makes B-spline easier to implement

(He et al., 2002) and the method we choose in our study to approximate the smooth

function g∗(T ) in (2.2). For more details about the construction of basis functions,
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Figure 2.1: An B-spline example

readers are referred to Schumaker (2007, Section 4.3).

Suppose that the smooth function g∗(T ) is estimated on the interval [0, 1], where

there exists a partition, 0 = s0 < s1 < · · · < sk < sk+1 = 1. With the order

of polynomial spline fixed at ℓ, the spline basis functions are denoted by B(t) =

{B1(t), B2(t), · · · , BN(t)}, where N = k + ℓ. Then, g∗(t) can be approximated as

g∗(t) ≈ B(t)T γ, (2.3)

where γ = (γ1, · · · , γN) are the coefficients associated with spline basis functions.

Figure 2.1 presents an example in which g∗(T ) = 2 sin(2πT ), where the black solid

line represents the true curve g∗(T ), and the red dashed line represents the fitted

curve obtained by using the cubic B-spline. Although this approximation is not

perfect in Figure 2.1, it can be improved by carefully selecting the tuning parameter

as demonstrated in Section 2.4.
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2.3 Proposed Estimation Methods

One-Stage Estimation Method

To estimate parameters in the linear part in (2.2), β = (β0, β1), and the coefficients

γ = (γ1, · · · , γN), we view the basis functions B(t) as new covariates in the mode

regression. Mimicking the objective function based on kernel density estimators of Y

given covariates in Chapter 1, we propose to estimate β and γ by maximizing

Qh(β, γ) = 1
n

n∑
j=1

Kh

(
Yj − B(Tj)T γ − β0 − β1Xj

)
, (2.4)

with respect to γ and β, where Kh(t) = 1/h ·K(t/h) is the kernel, and h is the band-

width. By setting K(t) as the standard normal density function, an EM algorithm

proposed by Yao and Li (2014) can be applied to compute the proposed estimates

for β and γ. In particular, one may use modal expectation maximization (MEM)

algorithm (Li et al., 2007) outlined below to implement the EM algorithm.

• MEM-1: Set m = 0, select a starting a point,
(
β(m), γ(m)

)
. For example, one

may carry out linear mean regression analysis to regress Y on B(T ) and X to

obtain such a starting point.

• MEM-2: Compute

π(j|β(m), γ(m)) =
Kh

{
Yj − B(Tj)T γ(m) − β

(m)
0 − β

(m)
1 Xj

}
∑n

k=1 Kh

{
Yk − B(Tk)T γ(m) − β

(m)
0 − β

(m)
1 Xk

} , j = 1, · · · , n,

• MEM-3: Update (β(m+1), γ(m+1)) via

(β(m+1), γ(m+1))

= argmin(β,γ)

n∑
j=1

[
π(j|βm, γ(m)) log Kh

(
Yj − B(Tj)T γ(m) − β

(m)
0 − β

(m)
1 Xj

)]

=
(
ZT DZ

)−1
ZT DY, (2.5)

where Z = (B(T ), X), and D is an n × n diagonal matrix with diagonal

elements π(j|βm, γ(m)), j = 1, · · · , n.

33



www.manaraa.com

• Set m = m + 1. Repeat MEM-2 and MEM-3 till convergence.

It is worth pointing out that

N∑
i=1

Bi(T ) = 1,

resulting in perfect multicollinearity in (2.5). This causes the above MEM algorithm

to diverge. Therefore, to implement the MEM algorithm, we view model (2.2) as

yM(x, t) = Mode(Yj|Xj = x, Tj = t) = g(t) + β1x, for j = 1, · · · , n. (2.6)

where g(t) = g∗(t) + β0. By replacing Qh(β, γ) in (2.4) with

Qh(β1, γ) = 1
n

n∑
j=1

Kh

(
Yj − B(Tj)T γ − β1Xj

)
, (2.7)

the MEM algorithm can be used to estimate β1 and γ. We refer to this method

as the one-stage mode regression method in the absence of measurement error (RO)

henceforth, and the estimator is denoted by (β̂RO,1, γ̂RO).

Two-Stage Estimation Method

Inspired by existing literature on partially linear mean regression, we now for-

mulate a two-stage partially linear mode model induced from a partially linear mean

model under certain assumptions that can be satisfied under some practical scenarios.

With some abuse of notation, we now state these assumptions using some notations

already used in Section 2.1, some of which are also stated following (2.1).

(a1) The mean regression model of Y given (X, T ) is

Y = α1X + g∗(T ) + ϵ∗ (2.8)

where α1 is an unknown regression coefficient associated with X. g∗(·) is an

unknown function, and ϵ∗ is the random error with E(ϵ∗|T, X) = 0;

(a2) Mode(ϵ∗|T, X) = β0 + α2X, where β0 and α2 are unknown parameters; and
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(a3) E(X|T ) = 0.

Assumptions (a1) and (a2) together imply that the mode regression model is also a

partially linear model specified by

Mode(Y |T, X) = β0 + (α1 + α2)X + g∗(T ), (2.9)

which is equivalent to (2.6) with β1 = α1 + α2 and g(T ) = β0 + g∗(T ). Assumption

(a3) coincides with Assumption 3.1 in He and Liang (2000), who pointed out that a

sufficient condition for it is the independence of T and X, since E(X) = 0 can always

be achieved by centering data for X as part of data standardization. Under (a3),

(2.8) implicates E(Y |T ) = g∗(T ).

Besides inducing a partially linear mode model from a partially linear mean model,

the above development also reveals that, thanks to (a1) and (a3), one may first es-

timate g∗(·) by carrying out mean regression analysis of Y on T , which involves no

covariate measurement error complication. For this mean regression, one can use

any nonparametric mean regression method, such as local polynomial mean regres-

sion or spline-based methods designed for error-free data. To be consistent with the

approach for approximating the nonparametric part in Section 2.3, we use B-spline

mean regression at this stage. After an estimator for g∗(·) is obtained, denoted by

ĝ∗(·), one may carry out linear mode regression of Y ∗ = Y − ĝ∗(T ) on X to estimate

β0 and β1 = α1 + α2 in (2.9) following the methods proposed by Yao and Li (2014).

These two steps accomplish estimating the parametric part, β1, and the nonparamet-

ric part, g(T ) = β0 + g∗(T ). We refer to the so-obtained estimators the two-stage

estimators, and refer to this method the two-stage mode regression method in the

absence of measurement error (RT), which we recap in the following algorithm.

(T1) Approximate g∗(t) via cubic splines with k knots, that is, g∗(t) ≈ B
′(t)γ∗.

Regress Y on B(T ) using the least squares method, resulting in an estimator

for γ∗, denoted by γ̂∗. This leads to an estimator for ĝ∗(t) = B
′(t)γ̂∗
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(T2) Define Y ∗
j = Yj − ĝ∗(Tj), for j = 1, · · · , n, then implement the EM algorithm

on {Xj, Y ∗
j }, for j = 1, · · · , n, in Yao et al. (2012) to estimate β.

Denote the resultant estimators by (β̂RT, γ̂RT).

2.4 Tuning Parameter Selection

To implement the above two estimation methods, the number of interior knots k

and the bandwidth h need to be selected appropriately. In this section, we propose

two methods to select the tuning parameters. Similar to the strategy in Zhao et al.

(2013) and Zhao et al. (2014), we first consider a two dimensional M -fold cross

validation method. This method can be employed to select tuning parameter for

both one-stage method and two-stage method. Additionally, in order to reduce the

computing time in our one-stage estimation method, we develop a two-layer tuning

parameter selection method. This method is designed only for the one-stage method.

Two-dimensional cross validation

As in Zhao et al. (2014), He et al. (2002) and Wang et al. (2009), we use cubic

spline basis functions to approximate g(T ) with ℓ = 4. Lower order of spline basis

functions can be applied if g(T ) is less smooth (He et al., 2002). After fixing the

order of spline basis functions, the B-spline method is typically sensitive to the choice

of the number of knots k. Besides the interior knots, the performance of all kernel-

based methods can be noticeably affected by the choice of bandwidths. To address

the choice of k and h, we propose a two dimensional cross validation method that

entails minimizing the objective function

CV (k, h) = M−1
M∑

m=1
n−1

m

∑
i∈Im

Kh

{
Yi − ĝ(−m)(Ti) − β̂

(−m)
1 Xi

}
, (2.10)

where M presents the number of partitions of the data set, Im is the observation index

set associated with the m-th subset of data, nm is the size of the data set Im, m =
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1, · · · , M , β̂
(−m)
1 and ĝ(−m)(·) are estimates from applying the considered estimation

method to the observed data after deleting the mth subset. To be more specific, when

one chooses (h, k) that go in the one-stage estimation method, β̂
(−m)
1 and ĝ(−m)(·) in

(2.10) are β̂RO,1 and ĝRO(·) computed using data {(Yj, Tj, Xj), j ∈ I\Im}, where

I = {1, · · · , n}, and “\” is the set subtraction operator, for m = 1, · · · , M . Similarly,

when one selects (h, k) that go along with the two-stage estimation method, β̂
(−m)
1 and

ĝ(−m)(·) in (2.10) are β̂RT,1 and ĝRT (·) computed using data {(Yj, Tj, Xj), j ∈ I\Im},

where I = {1, · · · , n} for m = 1, · · · , M . All these estimators depend on (h, k),

the dependence we suppress on the right-hand side of (2.10) for cleaner notations.

Following this cross validation procedure, referred to as the two-dimensional CV in

the sequel, the chosen number of knots and bandwidth are given by

(k̂, ĥ) = max
k,h

CV (k, h).

We follow the strategy used in He et al. (2002) to determine the candidate values

for k such that, given a chosen order of B-spline, and thus ℓ is fixed, these values

lie in [max(0.5n1/5 − ℓ, 8 + 2n1/5 − ℓ)]. The M -fold two dimensional cross validation

method can be computationally prohibitive. To ease the computational burden for

tuning parameters selection for the one-stage estimation method, we propose another

procedure described next for selecting tuning parameters tailored for this estimation

method.

Two layer tuning parameter selection

We observe in extensive simulation studies that the quality of an estimator for

β1 is often noticeably influenced by how well g(·) is estimated, although the other

way around is not necessarily true. This motivates our second strategy for selecting

(h, k), referred to as the two-layer tuning parameters selection method outlined in

the following algorithm.
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(L1) For each candidate value of k, kc, where c ∈ {1, · · · , C}, find an h among its

candidate values, {h1, · · · , hD}, that minimizes the integrated squared error

(ISE) of the estimate for g(·),

ISE(h, kc) =
∫ 1

0
{ĝRO(t) − g̃(t)}2dt, (2.11)

where g̃(t) is a preliminary estimate for g(·), and ĝRO(t) is the one-stage estimate

obtained based on the entired observed data set, whose dependence of on h,

after k is fixed at kc, is suppressed on the right-hand side. Denote by h(c) =

arg min1≤d≤D ISE(hd, hc), for c = 1, · · · , C.

(L2) Compute the M -fold CV criterion in (2.10) evaluated at (h(c), kc), for c =

1, · · · , C. The selected values for the tuning parameters used in the one-stage es-

timation method are given by (h(c∗), kc∗), where c∗ = arg min1≤c≤C CV(h(c), kc).

This two-layer procedure requires C(D + M) rounds of estimation of β1 and g(·),

in contrast to CDM rounds of such estimation that the two-dimensional CV proce-

dure involves. Hence, besides being well motivated by the empirical evidence that

estimating the non-parametric part of the regression model has a greater impact on

estimating the parametric part than the influence of the other way around, the two-

layer tuning parameters selection method yields a tremendous amount of saving in

computing time. The price one pays for such saving is that one needs some pilot

estimator for g(·), namely g̃(t) in (2.11), that can estimate the truth reasonably well.

One way to obtain a g̃(t) is to posit a flexible parametric model for the mode resid-

ual, ϵ = Y − β1X − g(T ), and approximate g(T ) via a polynomial function of some

order, then estimate the unknowns using the maximum likelihood method. Another

option is to use the estimate from the two-stage estimation method, ĝRT (t), as a pilot

estimate.

It is worth pointing out that, for the two-stage estimation method, the nonpara-

metric part of the estimation for β0 + g(t) is mostly accomplished in the first stage,
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i.e., (T1) in Section 2.3, where β̂0 + ĝ(t) is obtained and does not depend on h.

Hence, the two-layer tuning parameters selection procedure is not applicable for the

two-stage estimation method since one chooses h for estimating the nonparametric

part in (L1).

2.5 Empirical Study

Simulation Study for the One-Stage Estimation Method

In the simulation experiment, we consider the following two model configurations:

(E1) Y = 2 sin(2πt) + X + (1 + 2X)ϵ, where ϵ ∼ 0.5N(−1, 2, 52) + 0.5N(1, 0.52),

X ∼ uniform(−1, 1), T ∼ uniform(0, 1) and Corr(X, T ) = 0.83.

(E2) Y = exp{sin(πt)} + X + (1 + 2X)ϵ, where ϵ ∼ 0.5N(−1, 2, 52) + 0.5N(1, 0.52),

X ∼ uniform(−1, 1), T ∼ uniform(0, 1) and Corr(X, T ) = 0.83.

Given {Xj, Tj}n
j=1, ϵM(x, t) ≈ 1 for all (x, t). Hence, in (E1), yM(x, t) ≈ 2 sin(2πt) +

1+3x; in (E2), yM(x, t) ≈ exp(sin(πt))+1+3x. From the perspective of model (2.6),

under configurations (E1) and (E2), ignoring rounding error, the true parametric

part coefficient is β1 = 3, the true nonparametric function g(t), t ∈ [0, 1], is equal

to 2 sin(2πt) + 1 and exp{sin(πt)} + 1, respectively. g∗(t) is equal to 2 sin(2πt) and

exp{sin(πt)}, respectively. The simulation settings in both (E1) and (E2) are used to

show the performance of the one-stage estimation method. The correlation between

X and T is controlled by Corr(X, T ) = 0.83. Additionally, to evaluate the perfor-

mance of ĝ(t), we compute the Monte Carlo average of the mean square error of the

nonparametric function estimate given by

NE2 = MC average of
[
n−1

n∑
i=1

{ĝ(Ti) − g(Ti)}2
]

. (2.12)

Under each model setting, 300 Monte Carlo replicate sets of the form {(Yj, Xj, Tj)}

are generated, producing 300 sets of estimates, {β̂RO,1, NE2
RO} for one-stage method.
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Table 2.1 presents the Monte Carlo average and the standard error of the estimates

obtained from the one-stage method when n = 200 and 400, with the tuning param-

eter is selected by two dimensional cross validation. Compared to the true value of

parametric coefficient, the one-stage estimates with a larger sample size are closer to

the true value. Furthermore, according to the NE2 for different sample sizes, the

one-stage estimate of the nonparametric part based on n = 400 also provides a better

approximation.

Table 2.1: Averages of parameter estimates across 300 repetitions
from one-stage estimation method with tuning parameters chosen
by the two-dimensional cross validation. Numbers in parentheses
are (10 × standard errors) associate with the averages. The truth is
β1 = 3.

(E1) (E2)
n = 200 n = 400 n = 200 n = 400

β1 NE2 β1 NE2 β1 NE2 β1 NE2

2.65 0.38 2.83 0.15 2.66 0.38 2.84 0.15
(0.31) (0.34) (0.17) (0.17) (0.29) (0.44) (0.15) (0.19)

Table 2.2 repeats the same demonstration as that in Table 2.1 except for that the

two-layer tuning parameters selection procedure is usded to choose (h, k), where g̃(t)

in (2.11) is set at the truth for simplicity. Comparing these results with those when

the two-dimensional CV procedure is used, we find much improved for both β̂1 and

ĝ(·).

Table 2.2: Averages of parameter estimates across 300 repetitions
from one-stage estimation method with tuning parameters chosen
by the two-layer tuning parameter selection method. Numbers in
parentheses are (10 × standard errors) associate with the averages.
The true β1 = 3.

(E1) (E2)
n = 200 n = 400 n = 200 n = 400

β1 NE2 β1 NE2 β1 NE2 β1 NE2

2.89 0.07 2.92 0.03 2.88 0.07 2.91 0.03
(0.12) (0.11) (0.10) (0.02) (0.16) (0.16) (0.09) (0.09)

40



www.manaraa.com

Simulation Study for the Two-Stage Estimation Method

To test the performance of our two-stage estimation method, we revise the sim-

ulation settings (E1) and (E2) slightly to simulate covariates data so that, X and T

are independent.

(E3) Y = 2 sin(2πt) + X + (1 + 2X)ϵ, where ϵ ∼ 0.5N(−1, 2, 52) + 0.5N(1, 0.52),

X ∼ uniform(−1, 1), T ∼ uniform(0, 1), X and T are independent.

(E4) Y = exp{sin(πt)} + X + (1 + 2X)ϵ, where ϵ ∼ 0.5N(−1, 2, 52) + 0.5N(1, 0.52),

X ∼ uniform(−1, 1), T ∼ uniform(0, 1), X and T are independent.

Under each model setting, 300 Monte Carlo replicate sets of the form {(Yj, Xj, Tj)}

are generated, producing 300 sets of estimates. Table 2.3 represents averages of the

estimates {β̂RT , NE2
RO} across 300 replicates under (E3) and (E4) along with their

empirical standard errors when n = 200 and 400. Similar as results from the one-

stage method, Table 2.3 shows that the estimates for the parametric part with a

larger sample size are closer to the true value. The B-spline approximation based

on a larger sample size has better performance in terms of NE2. Comparing results

under (E3) and (E4), even with a more complex nonlinear g(t) in (E4) than that in

(E3), one can see that the results under (E4) tell the same story as the results under

(E3).

2.6 Discussion

Besides the tuning parameter selection strategies presented in Section 2.4, we also

experiment on combining ISE(h) and MSE(h) = (β̂h − β)T Σ−1(β̂h − β) to select

the bandwidth. We have found that computing ISE(h) is less time consuming, and

that bandwidths chosen via minimizing ISE(h) lead to more accurate estimators

than when other criteria are used to select the bandwidth, such as MSE(h), or some
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Table 2.3: Averages of parameter estimates from the two-stage
estimation method across 300 repetitions. Numbers in parentheses
are (10 × standard errors) associate with the averages. The truths
are β0 = 1, β1 = 3.

(E3)
n = 200 n = 400

β0 β1 NE2 β0 β1 NE2

0.94 2.79 0.27 0.95 2.83 0.14
(0.15) (0.17) (0.12) (0.11) (0.14) (0.05)

(E4)
n = 200 n = 400

β0 β1 NE2 β0 β1 NE2

0.91 2.76 1.27 0.94 2.86 1.15
(0.15) (0.20) (0.28) (0.11) (0.14) (0.19)

combination of ISE(h) and MSE(h). We also observe in empirical study that, when

it comes to estimating β1 and g(t) via the one-stage method, the two dimensional

cross validation tuning parameter selection method produces similar results as those

when the two-layer tuning parameter selection method is used.

When X in model (2.2) is observable, our two proposed method can be implemented

to estimate the parametric coefficient and the unspecified smooth function. If, instead

of observing X, we observe its error contaminated surrogate W , our two proposed

methods need to be revised to account for measurement error in the covariate. In the

next chapter, we follow the rationale of the corrected kernel method in Chapter 1 to

propose a method for mode regression , assuming partially linear mode models with

error-prone X.
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Chapter 3

Partially Linear Mode Regression With Error

In Covariates

Covariates that cannot be measured precisely or directly are ubiquitous in practice

(Carroll et al., 2006). To address the practical issue of error-contaminated covariates,

methods accounting for measurement error in partially linear mean regression (Liang

et al., 1999, 2007, 2008; Liang and Li, 2009; Koul and Song, 2010) and methods

for partially linear quantile regression (He and Liang, 2000; Hardle et al., 2000) in

the presence of measurement error have been developed. But, to the best of our

knowledge, there exists no published work on partially linear mode regression in the

presence of covariate measurement error. The most relevant works so far are that by

Zhou and Huang (2016), who proposed methods for nonparametric mode regression

with covariate measurement error, and that in Chapter 1, where we developed meth-

ods for linear mode regression in the presence of covariate measurement error. We

spearheaded in this line of research and present in this chapter methods for inferring

the mode of Y conditioning on T and X when X is prone to measurement error.

In this chapter, we propose methods for estimating the conditional mode of a

continuous response given covariates of interests, some of which are prone to mea-

surement error and relate to the mode of the response linearly, and some are error-free

and relate to the mode via an unknown functional form. We study asymptotic prop-

erties of the proposed estimators for the linear part and the nonlinear part of the

mode model. Their finite sample properties are investigated via extensive simulation
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study, in comparison with their naive counterpart estimators that ignore covariate

measurement error, as well as with their error-free counterparts obtained based on

data free of covariate measurement error. In the simulation study, two proposed

procedures for choosing tuning parameters involved in the estimation methods are

also compared empirically. Finally, we apply the proposed methods to data from the

Framingham Heart Study.

3.1 Data and Models

Suppose that the observed data consist of n independent data points, {(Yj, Tj,

Wj)}n
j=1, where {Wj}n

j=1 are surrogates of the unobserved covariate values {Xj}n
j=1,

{Tj}n
j=1 are scalar covariate values, and {Yj}n

j=1 are response variable values. In

particular, we assume the classical measurement error model (1.2) in Chapter 1,

Wj = Xj + Uj.

We also assume that there exists a unique largest mode as in Grund and Hall (1995),

we aim to infer in this study the mode of the conditional distribution of Y given

(T, X), specified by the partially linear model in (2.6). Besides the unspecified func-

tion g(·) in (2.6), another nonparametric component of the mode regression model

we introduce lies in the mode residual, ϵ = Y − Mode(Y |T, X), the distribution of

which is left unspecified except that its mode is zero conditioning on (T, X). Denote

by fϵ|(T,X)(ϵ|t, x) the density of this distribution.

In Chapter 2, where there is no measurement error in the covariates and thus data

{(Yj, Tj, Xj)}n
j=1 are observed, we consider drawing inference for β1 and g(·) based on

the following kernel density estimator for fϵ|(T,X)(0|t, x),

Qh(β1, g) = n−1
n∑

j=1
Kh(Yj − β1Xj − g(Tj)), (3.1)

Sensible estimators for β1 and g(·) should maximize Qh(β1, g) for an adequately chosen

h since the mode of a distribution is where the corresponding density is maximized.
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In the presence of measurement error, since {Xj}n
j=1 are not observed, one can-

not use (3.1) to estimate fϵ|(T,X)(ϵ|t, x). Therefore, based on the observed data

{(Yj, Tj, Wj)}n
j=1, different ways to estimate the distribution of the mode residual

ϵ are called for. In this chapter, we still use B-spline to approximate g(t) in (2.6). As

for how to create B-spline basis functions, details can be found in Section 2.2. By

substituting Xj with Wj in (2.4), a naive objective function that one maximizes with

respect to β and γ is given by

Qh,nv(β, γ) = n−1
n∑

j=1
Kh(Yj − B(Tj)T γ − β1Wj). (3.2)

Using this naive objective function in the one-stage estimation method in Section 2.3

yields the one-stage naive estimators (NVO), denoted by (β̂NVO,1, γ̂NVO). The naive

estimators resulting from the two-stage estimation method in Section 2.3 (NVT) are

denoted by (β̂NVT,1, γ̂NVT). To account for measurement error, in the upcoming sec-

tion, we develop non-naive estimators for β1 and g(t). This is achieved by modifying

the kernel function in (3.2) to obtain an estimator for fϵ|(T,X)(0|t, x) acknowledging

that W relates to X according to (1.2). This strategy is motivated by the deconvolut-

ing kernel density estimators in the presence of measurement error (Carroll and Hall,

1988; Stefanski and Carroll, 1990) that we elaborate next. To simplify notations, in

this chapter, we assume a scalar X henceforth, and defer discussions on generalization

to multivariate X at the end of this chapter.

3.2 Proposed Methods

The One-stage Corrected Kernel Estimation Method

Following Carroll and Hall (1988) and Stefanski and Carroll (1990), when U is

nondifferential (Carroll et al., 2006, Section 2.5), and the characteristic function of U

never vanishes, one has

E[K∗
h{Y − β1W − g(T )}] = K{Y − β1X − g(T )}, (3.3)
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where K∗
h(s) = h−1K∗(s/h) is the scaled deconvoluting kernel function defined in

(1.7),

K∗(s) = 1
2π

∫
e−ivs ϕK(v)

ϕU(−β1v/h)ds,

in which ϕU(v) is the characteristic function of U , and ϕK(v) is the Fourier transform

of K(s). All integrals in this chapter are over the real line unless otherwise stated.

As in most literature on deconvoluting density estimation, we assume ϕU(v) known

for the majority of the study, and discuss treatments of unknown ϕU(v) in simulation

section. The significance of (3.3) is that it motivates the following estimator for

fϵ|(T,X)(0|t, x) that accounts for measurement error,

Q∗
h(β1, g) = n−1

n∑
j=1

K∗
h(Yj − β1Wj − g(Tj)). (3.4)

which has the same bias as that of (3.1).

Using the B-spline approximation for g(·) in (3.4), we obtain non-naive estimators

for β1 and γ by maximizing

Q∗
h(β1, γ) = n−1

n∑
j=1

K∗
h(Yj − B(Tj)T γ − β1Wj). (3.5)

with respect to β1 and γ. Because (3.5) involves a deconvoluting kernel that corrects

the original kernel in (3.2) for measurement error, and we maximize (3.5) to esti-

mate β1 and γ (and thus g(t)) simultaneously, we refer to the so-obtained estimators

corrected kernel one-stage estimators, denoted by corrected kernel one-stage estima-

tors, denoted by (β̂CKO,1, γ̂CKO), respectively, and refer to this method the one-stage

corrected kernel estimation method. By comparing the one-stage corrected kernel

estimation method proposed here with the one-stage estimation method in Chapter

2, one can easily see that the difference lies in that the kernel function in (2.4) is

replaced by the corrected kernel function (1.7) when the observed covariate is W

instead of X.
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The Two-stage Corrected Kernel Estimation Method

Similarly, one may revise the two-stage estimation method in the absence of mea-

surement error in Chapter 2 to estimate the unknowns in a partially linear mode

model when X is prone to measurement error. More specifically, after an estimator

for g∗(·) is obtained in the first stage, denoted by ĝ∗(·), one may carry out linear

mode regression of Y ∗ = Y − ĝ∗(T ) on X using data {(Y ∗
j , Wj)}n

j=1 to estimate β0

and β1 = α1 + α2 in (2.9) following the methods proposed in Chapter 1. These two

steps accomplish estimating the parametric part, β1, and the nonparametric part,

g(T ) = β0 + g∗(T ). We refer to the so-obtained estimators the corrected kernel

two-stage (CKT) estimators, and refer to this method the two-stage corrected kernel

estimation method. The algorithm for implementing this method is recapped below.

(T∗1) Approximate g∗(t) via cubic splines with k knots, that is, g∗(t) ≈ B
′(t)γ∗.

Regress Y on B(T ) using the least squares method, resulting in an estimator

for γ∗, denoted by γ̂∗. This leads to an estimator for ĝ∗(t) = B
′(t)γ̂∗

(T∗2) Define Y ∗
j = Y − ĝ∗(Tj), for j = 1, · · · , n. Maximize the following objective

function that involves the corrected kernel with respect to (β0, β1),

Q∗
h(β0, β1) = n−1

n∑
j=1

K∗
h(Y ∗

j − β0 − β1Wj), (3.6)

which is constructed following the same rationale as that of (3.4) and is the

same objective function used in Chapter 1 for linear mode regression in the

presence of covariate measurement error. Denote the resultant estimators for

β0 and β1 as β̂0 and β̂CKT,1, respectively.

3.3 Asymptotic Properties

In this section, asymptotic properties of the estimator obtained from the one-stage

estimation method will be discussed. First, we have the following Theorem 3 which
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states the consistency of the proposed one-stage estimator.

Theorem 3. Under conditions (C∗1)–(C∗5) in Appendix D and conditions in Lemma

C, there exists a maximizer of Q∗
h(γ, β), denoted by θ̂CK = (γ̂CK, β̂CK), such that, as

n → ∞ and h → 0,

(i) when U follows an ordinary smooth distribution of order b, if nh7+2b → 0, then

∥θ̂CK − θ∥ = O(h2) + Op

√ 1
nh3+2b

 , (3.7)

(ii) when U follows a super smooth distribution of order b,

if exp(2|β1|bh−b/d2))/(nhb6) → 0,

where b6 = max{3 − 2 min(b2, b3), 5 − 2 min(b2, b3, b4), 7 − 2 min(b2, b3, b4, b5)},

in which bℓ, for ℓ = 2, 3, 4, 5, are defined in Lemma C, then

∥θ̂CK − θ∥ = O(h2) + Op

exp
(

|β1|b

d2hb

)√
1

nh3−2 min(b2,b3)

 , (3.8)

θ = (β, γ), where γ is the coefficient vector of basis functions B(t) such that

||g(t) − B(t)γ|| = O(k−r) and g(t) is rth continuously differentiable. The next the-

orem states that the one-stage estimator for β follows a normal distribution asymp-

totically.

Theorem 4. Under the same assumptions imposed in Theorem 3,

(i) if U follows an ordinary smooth distribution of order b,

√
nh3+2b

(
β̂CK − β − h2µ2I

∗−1Q/4
)

d−→ N(0, I∗−1MLI∗−1); (3.9)

where ML is constant matrices.

(ii) if U follows a super smooth distribution of order b,

{
Var(β̂CK)

}−1/2 (
β̂CK − β − h2µ2I

∗−1Q/4
)

d−→ N(0, 1), (3.10)
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where

Q = lim
n→∞

n−1
n∑

j=1
E{f (3)(0|Xj, Tj)X̃j},

I∗ = lim
n→∞

n−1
n∑

j=1
E
{
f (2)(0|Xj, Tj)X̃jX̃

T
j + X̃jB

T
j Φ−1Ψ

}
,

Var(β̂CK) = O[exp{2|β1|b/(d2h
b)}/{nh3−2 min(b2,b3)}], and Σ−1/2 denotes the in-

verse of the positive definite square root of a positive definite matrix Σ.

The proofs of Theorem 3 and Theorem 4 can be found in Appendix D and Ap-

pendix E, respectively.

3.4 Tuning Parameter Selection

As in Chapter 2, cubic spline basis functions are adopted to approximate g(T )

with ℓ = 4 in this chapter. After fixing the order of spline basis functions, similar

as the the tuning parameter selection in section 2.4, two-dimensional cross validation

method and two-layer method are also employed to select the tuning parameter in

this chapter.

Two-dimensional cross validation

Since sensible estimators for β1 and g(·), using error-prone data maximize (3.4), a

natural way to choose h and k is by maximizing the following M -fold cross validation

(CV) criterion, which can be computed after one partitions the observed data into

M , subsets that are as of equal size as possible,

CV (k, h) = M−1
M∑

m=1
n−1

m

∑
i∈Im

K∗
h

{
Yi − ĝ(−m)(Ti) − β̂

(−m)
1 Xi

}
, (3.11)

where M presents the number of partitions of the data set, Im is the observa-

tion index set associated with the m-th subset of data, nm is the size of the data

set Im, m = 1, · · · , M , β̂
(−m)
1 and ĝ(−m)(·) are estimators for β1 and g(·), respec-

tively, based on the raw data of size n excluding the mth subset of size nm, for
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m = 1, · · · , M . To be more specific, when one chose (h, k) that go in the one-stage

estimation method, β̂
(−m)
1 and ĝ(−m)(·) in (3.11) are β̂CKO,1 and ĝCKO(·) computed

using data {(Yj, Tj, Wj), j ∈ I\Im}, where I = {1, · · · , n}, and “\” is the set sub-

traction operator, for m = 1, · · · , M . Similarly, when one selects (h, k) that go along

with the two-stage estimation method, β̂
(−m)
1 and ĝ(−m)(·) in (3.11) are β̂CKT,1 and

ĝCKT (·) computed using data {(Yj, Tj, Wj), j ∈ I\Im}, where I = {1, · · · , n} for

m = 1, · · · , M . All these estimators depend on (h, k), the dependence we suppress

on the right-hand side of (3.11) for cleaner notations. Following this cross validation

procedure, referred to as the two-dimensional CV in the sequel, the chosen number

of knots and bandwidth are followed by

(k̂, ĥ) = max
k,h

CV (k, h).

Zhao et al. (2013) and Zhao et al. (2014) employed a similar procedure to choose

tuning parameters in partially linear varying coefficient mode regression in the ab-

sence of covariate measurement error. In our simulation, FFT method (Bailey and

Swarztrauber, 1994) is utilized to calculate the deconvoluting kernel K∗(·) in (3.1).

Carrying out the FFT method in conjunction with the two dimensional M -fold cross

validation in the one-stage corrected kernel method makes it a computationally ex-

pensive procedure. To ease the computational burden for tuning parameters selection

for the one-stage corrected kernel estimation method, the two-layer tuning parameters

selection method will be utilized.

Two layer tuning parameter selection

Our proposed methods in this chapter involve calculate the deconvoluting kernel

(1.7). Although the FFT method is employed in this calculation, the computing time

is much longer than the process in Chapter 2. This motivates us to mimic the second

strategy in last chapter and develop the following algorithm.
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(L∗1) For each candidate value of k, kc, where c ∈ {1, · · · , C}, find an h among its

candidate values, {h1, · · · , hD}, that minimizes the integrated squared error

(ISE) of the estimate for g(·),

ISE(h, kc) =
∫ 1

0
{ĝCKO(t) − g̃(t)}2dt, (3.12)

where g̃(t) is a preliminary estimate for g(·), and ĝCKO(t) is the one-stage

corrected kernel estimate obtained based on the entired observed data set, whose

dependence of on h, after k is fixed at kc, is suppressed on the right-hand side.

Denote by h(c) = arg min1≤d≤D ISE(hd, kc), for c = 1, · · · , C.

(L∗2) Compute the M -fold CV criterion in (3.11) evaluated at (h(c), kc), for c =

1, · · · , C. The selected values for the tuning parameters used in the one-stage es-

timation method are given by (h(c∗), kc∗), where c∗ = arg max1≤c≤C CV(h(c), kc).

The same as the two-layer tuning parameter method in chapter 2, for the two-stage

estimation method, the nonparametric part of the estimation for g(t) = β0 + g∗(t)

is mostly accomplished in the first stage, i.e., (T∗1) in Section 3.2, where ĝ∗(t) is

obtained and does not depend on h. Hence, the two-layer tuning parameters selection

procedure is not applicable for the two-stage estimation method since one chooses h

for estimating the nonparametric part in (L∗1).

3.5 Empirical Study

Simulation Study for the One-Stage Estimation Method

To assess finite sample performance of the one-stage estimation method, we com-

pute β̂CKO,1 and ĝCKO(t) based on data simulated from the following two settings,

(F1) Y = 2 sin(2πt) + X + (1 + 2X)ϵ, where ϵ ∼ 0.5N(−1, 2, 52) + 0.5N(1, 0.52),

X ∼ uniform(−1, 1), T ∼ uniform(0, 1), U ∼ M(0, σ2
u), Corr(X,T) = 0.83.

51



www.manaraa.com

(F2) Y = exp(sin(πt)) + X + (1 + 2X)ϵ, where ϵ ∼ 0.5N(−1, 2, 52) + 0.5N(1, 0.52),

X ∼ uniform(−1, 1), T ∼ uniform(0, 1), U ∼ M(0, σ2
u), Corr(X,T) = 0.83.

In the above two settings, the distribution of M represents normal and Laplace distri-

bution with mean 0 and variance σ2
u, respectively. To vary V ar(U) = σ2

u, under each

true model configuration, we set the reliability ratio λ = V ar(X)/{V ar(X) + σ2
u}

equal to 0.75, 0.85, 0.95, respectively. When implementing our proposed methods, the

kernel K(t) used for obtaining estimators based on error-free data {(Yj, Tj, Xi)}n
j=1

is the standard normal density, as in Zhao et al. (2014); and we use the kernel

K(T ) = 48 cos t(1 − 15/t2)/(πt4) − 144 sin t(2 − 5/t2)/(πt5), of which the Fourier

transform is ϕK(t) = (1 − t2)3I(−1 ≤ t ≤ 1), for the corrected kernel method based

on error-prone data {(Yj, Tj, Wj)}n
j=1, where I(·) is the indicator function.

Besides the corrected kernel one-stage estimates, β̂CKO,1 and ĝCKO(t), we also

maximize (3.2) to obtain the naive one-stage estimates, denoted by β̂NV O,1 and

ĝNV O(t). Lastly, as benchmark estimates that the proposed estimates and the naive

estimates compare with, we maximize (2.7), with g(·) approximated by cubic splines,

to obtain the one-stage mode regression estimates, denoted by β̂RO,1 and ĝRO(t) based

on error-free data {(Yj, Tj, Xi)}n
j=1. Under each of the simulation setting, 300 Monte

Carlo replicate data sets are generated from the true model of {Yj, Tj, Wj}n
j=1 with

n = 200 and 400 respectively, producing 300 sets of estimates from the one-stage

estimation method. For the one-stage estimation method, the tuning parameter is

selected by using the two dimensional cross validation method and the two-layer

method, respectively.

First, the simulation results based on the two dimensional cross validation tuning

parameter selection method are presented. When implementing the corrected kernel

method for the partially linear model, the fast Fourier transforms (FFT, Bailey and

Swarztrauber, 1994) is implemented to approximate relevant integrals, and we use the

Laplace characteristic function in (1.7) even when U is actually normally distributed.
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Figure 3.1 presents in the left panels boxplots of β̂NV O,1, β̂CKO,1, β̂RO,1 obtained

from 300 Monte Carlo (MC) replicate data sets, where the responses are generated

according to (F1), U ∼ Laplace(0, σ2
u), and n = 200, with tuning parameters chosen

via the two-dimensional CV procedure. One can see from these boxplots substantial

bias reduction achieved by the proposed estimate β̂CKO,1 when comparing with its

naive counterpart, β̂NV O,1, which severely underestimates the covariate effect. As

one would expect with inference based on error-prone data, β̂CKO,1 exhibits higher

variability than its error-free counterpart, β̂RO,1, but they become more comparable

as error contamination in data lessens, i.e., as λ increases. The right panels in Figure

3.1 provide boxplots of the empirical squared error associated with the estimated

nonparametric part, NE2 =
200∑
j=1

{ĝ(Tj) − g(Tj)}2/200, where ĝ(·) denotes generically

one of the estimates, ĝNV O(·), ĝCKO(·), and ĝRO(·). These boxplots suggest that

the proposed one- stage estimation method also yields improved inference for the

nonparametric part of mode regression compared to its naive counterpart.

Figure 3.2 includes boxplots of the same quantities under the same model set-

ting as those in Figure 3.1 except that U ∼ N(0, σ2
u). Significant improvement in

inference from the proposed one-stage estimation method are again evident when

compared with the naive method, although their resemblance to the error-free infer-

ence is less impressive than that in the presence of Laplace measurement error when λ

is low. This latter phenomenon can be explained by the asymptotic results, which in-

dicate much slower convergence rates of the estimates in the presence of super smooth

measurement error than when the measurement error is ordinary smooth.

Figure 3.3 and Figure 3.4 depict boxplots of estimates of β1 and NE2 in the

presence of Laplace measurement error and normal measurement error, respectively,

when n = 400. When compared with Figure 3.1 and Figure 3.2, one can see that

the variance of the estimates decrease as the sample size increases. Table 3.2 shows

averages of parameter estimates across 300 repetitions for Laplace measurement error
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and normal measurement error under (F1), respectively, when n = 400. The same

pattern as in Figure 3.3 and Figure 3.4 can be observed in Table 3.2.

Table 3.1: One-stage estimation method with two di-
mensional cross validation tuning parameter selection.
Averages of parameter estimates over 300 repetitions
when n = 200 under (F1). Numbers in parentheses are
(10 × standard errors) associate with the averages. The
truth is β1 = 3.

75% 85% 95%
β1 NE2 β1 NE2 β1 NE2

U ∼ N(0, σ2)
Naive 0.61 2.41 0.94 1.50 1.57 14.06

(0.32) (0.67) (0.40) (2.34) (0.43) (128.99)
CK 2.27 1.05 2.44 0.43 2.73 0.29

(0.76) (1.56) (0.40) (0.38) (0.25) (0.59)
U ∼ Laplace(0, σ2)

Naive 0.72 1.45 1.01 1.32 1.60 0.94
(0.35) (0.52) (0.41) (0.82) (0.47) (0.73)

CK 2.50 0.13 2.67 0.09 2.51 0.12
(0.20) (0.06) (0.17) (0.04) (0.21) (0.06)

TRUE 2.65 0.38
(0.31) (0.34)

Table 3.2: One-stage estimation method with two di-
mensional cross validation tuning parameter selection.
Averages of parameter estimates over 300 repetitions
when n =400 under (F1). Numbers in parentheses are
(10 × standard errors) associate with the averages. The
truth is β1 = 3.

75% 85% 95%
β1 NE2 β1 NE2 β1 NE2

U ∼ N(0, σ2)
NaiveN 0.47 1.48 0.80 1.24 1.72 0.64

(0.28) (0.36) (0.33) (0.36) (0.38) (0.33)
CKN 2.19 0.56 2.55 0.18 2.79 0.11

(0.38) (0.44) (0.21) (0.15) (0.13) (0.20)
U ∼ Laplace(0, σ2)

Naive 0.60 1.32 1.03 1.04 1.83 0.56
(0.30) (0.34) (0.37) (0.37) (0.39) (0.31)

CK 2.79 0.35 2.88 0.14 2.83 0.07
(0.47) (0.30) (0.24) (0.10) (0.13) (0.04)

TRUE 2.83 0.15
(0.17) (0.17)

Figures 3.5 and 3.6 depict counterpart results of those in Figures 3.1 and 3.2

when the responses are simulated according to (F2). Even with a more complex

nonlinear g(t) in (F2) than that in (F1), Figure 3.5 and Figure 3.6 tell the same story

as before, suggesting that the proposed one-stage estimation method, in conjunction
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Figure 3.1: Two dimensional cross validation tuning parameter selection method.
Under the simulation setting (F1) and the sample size n = 200, Boxplots of estimates
of β1 (on the left panels) and estimates of NE2 (on the right panels) when U is
Laplace measurement error at three levels of reliability ratios (from the top row to
the bottom row), λ = 0.75, 0.85, 0.95. Within each panel, the three estimates (from
left to right) result from the naive one-stage method (NAIVE), the corrected kernel
one-stage method (CKO), and one-stage (RO) in the absence of measurement error,
respectively.
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Figure 3.2: Two dimensional cross validation tuning parameter selection method.
Under the simulation setting (F1) and the sample size n = 200, Boxplots of estimates
of β1 (on the left panels) and estimates of NE2 (on the right panels) when U is
Normal measurement error at three levels of reliability ratios (from the top row to
the bottom row), λ = 0.75, 0.85, 0.95. Within each panel, the three estimates (from
left to right) result from the naive one-stage method (NAIVE), the corrected kernel
one-stage method (CKO), and one-stage (RO) in the absence of measurement error,
respectively.
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Figure 3.3: Two dimensional cross validation tuning parameter selection method.
Under the simulation setting (F1) and the sample size n = 400, Boxplots of estimates
of β1 (on the left panels) and estimates of NE2 (on the right panels) when U is
Laplace measurement error at three levels of reliability ratios (from the top row to
the bottom row), λ = 0.75, 0.85, 0.95. Within each panel, the three estimates (from
left to right) result from the naive one-stage method (NAIVE), the corrected kernel
one-stage method (CKO), and one-stage (RO) in the absence of measurement error,
respectively.
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Figure 3.4: Two dimensional cross validation tuning parameter selection method.
Under the simulation setting (F1) and the sample size n = 400, Boxplots of estimates
of β1 (on the left panels) and estimates of NE2 (on the right panels) when U is
Normal measurement error at three levels of reliability ratios (from the top row to
the bottom row), λ = 0.75, 0.85, 0.95. Within each panel, the three estimates (from
left to right) result from the naive one-stage method (NAIVE), the corrected kernel
one-stage method (CKO), and one-stage (RO) in the absence of measurement error,
respectively.
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with the two-dimensional CV procedure for tuning parameters selection, outperforms

its naive counterpart method, with more impressive improvement in the presence of

ordinary smooth measurement error than when the error is super smooth. Numerical

summary of these simulation results can be found in Table 3.3. Figure 3.7 and Figure

3.8 describe, after increasing the sample size to n = 400, boxplots of estimates of β1

and estimates of NE2 in the presence of two types of measurement error. As the

sample size increases, less variance of the estimates is also observed. Table 3.4 shows

averages of parameter estimates across 300 repetitions for Laplace measurement error

and normal measurement error under (F2), respectively, when n = 400. The same

pattern as in Figure 3.7 and Figure 3.8 can be observed in Table 3.4.

Table 3.3: One-stage estimation method with two di-
mensional cross validation tuning parameter selection.
Averages of parameter estimates over 300 repetitions
when n = 200 under (F2). Numbers in parentheses are
(10 × standard errors) associate with the averages. The
truth is β1 = 3.

75% 85% 95%
β1 NE2 β1 NE2 β1 NE2

U ∼ N(0, σ2)
Naive 0.63 1.72 0.99 1.29 1.55 0.92

(0.33) (2.00) (0.38) (0.55) (0.46) (0.53)
CK 2.19 0.77 2.46 0.54 2.78 0.23

(0.55) (0.45) (0.36) (0.74) (0.18) (0.32)
U ∼ Laplace(0, σ2)

Naive 0.72 2.39 1.05 1.39 1.75 1.38
(0.37) (0.80) (0.42) (1.50) (0.44) (5.44)

CK 2.77 0.97 2.74 0.63 2.79 0.23
(0.71) (1.03) (0.42) (1.57) (0.23) (0.30)

TRUE 2.66 0.38
(0.29) (0.44)

Figures 3.9 and 3.10 repeat the same demonstration as that in Figures 3.1 and

3.2 except for that the two-layer tuning parameters selection procedure is used to

choose (h, k), where g̃(t) in (3.12) is set at the truth for simplicity. Table 3.5 tells

the same story as in Figures 3.9 and 3.10. Other figures and tables when n = 200

and n = 400 under (F2), parallel to Figures 3.4-3.8 and Tables 3.2-3.4 with this

tuning parameters selection procedure employed are provided in the Appendix H.

Comparing these results with those when the two-dimensional CV procedure is used,
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Figure 3.5: Two dimensional cross validation tuning parameter selection method.
Under the simulation setting (F2) and the sample size n = 200, Boxplots of estimates
of β1 (on the left panels) and estimates of NE2 (on the right panels) when U is
Laplace measurement error at three levels of reliability ratios (from the top row to
the bottom row), λ = 0.75, 0.85, 0.95. Within each panel, the three estimates (from
left to right) result from the naive one-stage method (NAIVE), the corrected kernel
one-stage method (CKO), and one-stage (RO) in the absence of measurement error,
respectively.
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Figure 3.6: Two dimensional cross validation tuning parameter selection method.
Under the simulation setting (F2) and the sample size n = 200, Boxplots of estimates
of β1 (on the left panels) and estimates of NE2 (on the right panels) when U is
Normal measurement error at three levels of reliability ratios (from the top row to
the bottom row), λ = 0.75, 0.85, 0.95. Within each panel, the three estimates (from
left to right) result from the naive one-stage method (NAIVE), the corrected kernel
one-stage method (CKO), and one-stage (RO) in the absence of measurement error,
respectively.
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Figure 3.7: Two dimensional cross validation tuning parameter selection method.
Under the simulation setting (F2) and the sample size n = 400, Boxplots of estimates
of β1 (on the left panels) and estimates of NE2 (on the right panels) when U is
Laplace measurement error at three levels of reliability ratios (from the top row to
the bottom row), λ = 0.75, 0.85, 0.95. Within each panel, the three estimates (from
left to right) result from the naive one-stage method (NAIVE), the corrected kernel
one-stage method (CKO), and one-stage (RO) in the absence of measurement error,
respectively.
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Figure 3.8: Two dimensional cross validation tuning parameter selection method.
Under the simulation setting (F2) and the sample size n = 400, Boxplots of estimates
of β1 (on the left panels) and estimates of NE2 (on the right panels) when U is
Normal measurement error at three levels of reliability ratios (from the top row to
the bottom row), λ = 0.75, 0.85, 0.95. Within each panel, the three estimates (from
left to right) result from the naive one-stage method (NAIVE), the corrected kernel
one-stage method (CKO), and one-stage (RO) in the absence of measurement error,
respectively.
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Table 3.4: One-stage estimation method with two di-
mensional cross validation tuning parameter selection.
Averages of parameter estimates over 300 repetitions
n = 400 under (F2). Numbers in parentheses are (10 ×
standard errors) associate with the averages. The truth
is β1 = 3.

75% 85% 95%
β1 NE2 β1 NE2 β1 NE2

U ∼ N(0, σ2)
NaiveN 0.52 1.45 0.81 1.24 1.74 0.57

(0.28) (0.38) (0.35) (0.38) (0.36) (0.30)
CKN 2.16 0.46 2.51 0.23 2.78 0.08

(0.38) (0.42) (0.27) (0.22) (0.12) (0.06)
U ∼ Laplace(0, σ2)

Naive 0.57 1.42 0.97 1.10 1.82 0.56
(0.30) (0.38) (0.40) (0.40) (0.39) (0.30)

CK 2.75 0.34 2.83 0.18 2.83 0.09
(0.45) (0.24) (0.27) (0.17) (0.16) (0.14)

TRUE 2.84 0.15
(0.15) (0.19)

we find much improved estimates for g(·), and much less variable but otherwise com-

parable β̂CKO,1. This empirical evidence encourages use of the computationally less

expensive two-layer procedure when one has a reliable pilot estimate for g(t). As the

same size increases from n = 200 to n = 400, one can see continuing improvement

in estimates for the unknowns in a partially linear mode model from the proposed

one-stage estimation method, paired with either the two-dimensional CV tuning pa-

rameters selection procedure or the two-layer procedure.

Admittedly, under (F1), results shown in Figures 3.9–3.12 where the two-layer

procedure is employed to choose tuning parameters, can be overly optimistic, espe-

cially in regard to estimation for g(t), because the truth is used as the pilot “estimate”

g̃(t) in the first layer of this tuning parameters selection procedure. In the upcoming

subsection, we take a more practical route and use the two-stage estimate ĝCKT (t) as

g̃(t) in this tuning parameters selection procedure. From there, one can see similar

patterns in the one-stage estimates observed in Figures 3.9 and 3.10.

64



www.manaraa.com

β1

75
%

-1
0

1
2

3
4

5

NE2

0
1

2
3

4

85
%

-1
0

1
2

3
4

5

0
1

2
3

4

95
%

-1
0

1
2

3
4

5

NAIVE CKO RO

0
1

2
3

4

NAIVE CKO RO

Figure 3.9: Two-layer tuning parameter selection. Under the simulation setting
(F1) and the sample size n = 200. Boxplots of estimates of β1 (on the left panels) and
estimates of NE2 (on the right panels) when U is Laplace measurement error at three
levels of reliability ratios (from the top row to the bottom row), λ = 0.75, 0.85, 0.95.
Within each panel, the three estimates (from left to right) result from the naive one-
stage method (NAIVE), the corrected kernel one-stage method (CKO), and one-stage
(RO) in the absence of measurement error, respectively.
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Figure 3.10: Two-layer tuning parameter selection. Under the simulation setting
(F1) and the sample size n = 200. Boxplots of estimates of β1 (on the left panels) and
estimates of NE2 (on the right panels) when U is Normal measurement error at three
levels of reliability ratios (from the top row to the bottom row), λ = 0.75, 0.85, 0.95.
Within each panel, the three estimates (from left to right) result from the naive one-
stage method (NAIVE), the corrected kernel one-stage method (CKO), and one-stage
method (RO) in the absence of measurement error, respectively.
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Figure 3.11: Two-layer tuning parameter selection. Under the simulation setting
(F1) and the sample size n = 400. Boxplots of estimates of β1 (on the left panels) and
estimates of NE2 (on the right panels) when U is Laplace measurement error at three
levels of reliability ratios (from the top row to the bottom row), λ = 0.75, 0.85, 0.95.
Within each panel, the three estimates (from left to right) result from the naive one-
stage method (NAIVE), the corrected kernel one-stage method (CKO), and one-stage
(RO) in the absence of measurement error, respectively.
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Figure 3.12: Two-layer tuning parameter selection. Under the simulation set-
ting (F1) and the sample size n = 400. Boxplots of estimates of β1 (on the left
panels) and estimates of NE2 (on the right panels) when U is Normal measure-
ment error at three levels of reliability ratios (from the top row to the bottom row),
λ = 0.75, 0.85, 0.95. Within each panel, the three estimates (from left to right) result
from the naive method (NAIVE), the corrected kernel one-stage method (CKO), and
one-stage method (RO) in the absence of measurement error, respectively.
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Table 3.5: One-stage estimation method with two-
layer tuning parameter selection. Averages of parame-
ter estimates over 300 repetitions when n = 200 under
(F1). Numbers in parentheses are (10 × standard er-
rors) associate with the averages. The truth is β1 = 3.

75% 85% 95%
β1 NE2 β1 NE2 β1 NE2

U ∼ N(0, σ2)
Naive 1.56 0.41 2.00 0.25 2.53 0.13

(0.20) (0.19) (0.18) (0.17) (0.15) (0.16)
CK 2.51 0.12 2.67 0.10 2.80 0.06

(0.21) (0.06) (0.17) (0.04) (0.14) (0.03)
U ∼ Laplace(0, σ2)

Naive 1.67 0.40 2.15 0.22 2.59 0.12
(0.24) (0.23) (0.21) (0.16) (0.16) (0.12)

CK 2.80 0.10 2.83 0.08 2.82 0.07
(0.24) (0.05) (0.19) (0.05) (0.15) (0.03)

TRUE 2.89 0.07
(0.12) (0.11)

Table 3.6: One-stage estimation method with two-
layer tuning parameter selection. Averages of parame-
ter estimates over 300 repetitions when n = 400 under
(F1). Numbers in parentheses are (10 × standard er-
rors) associate with the averages. The truth is β1 = 3.

75% 85% 95%
β1 NE2 β1 NE2 β1 NE2

U ∼ N(0, σ2)
NaiveN 1.60 0.29 2.03 0.16 2.57 0.06

(0.13) (0.08) (0.12) (0.07) (0.11) (0.05)
CKN 2.47 0.09 2.66 0.05 2.81 0.04

(0.15) (0.03) (0.12) (0.02) (0.11) (0.01)
U ∼ Laplace(0, σ2)

Naive 1.76 0.27 2.16 0.14 2.63 0.05
(0.18) (0.13) (0.15) (0.11) (0.12) (0.02)

CK 2.83 0.06 2.89 0.05 2.86 0.04
(0.17) (0.02) (0.14) (0.02) (0.10) (0.02)

TRUE 2.92 0.03
(0.10) (0.02)

Simulation Study for the Two-Stage Estimation Method

In experiments where we monitor finite sample performance of the two-stage esti-

mation method, we adopt all simulation settings described in Section 3.5 except that

T is independent of X in order to satisfy assumption (a3). For completeness, the two

model configurations considered in the two-stage simulation experiment are stated

below.

(F3) Y = 2 sin(2πt) + X + (1 + 2X)ϵ, where ϵ ∼ 0.5N(−1, 2, 52) + 0.5N(1, 0.52),
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X ∼ uniform(−1, 1), T ∼ uniform(0, 1), U ∼ M(0, σ2
u), X ⊥ T .

(F4) Y = exp(sin(πt)) + X + (1 + 2X)ϵ, where ϵ ∼ 0.5N(−1, 2, 52) + 0.5N(1, 0.52),

X ∼ uniform(−1, 1), T ∼ uniform(0, 1), U ∼ M(0, σ2
u), X ⊥ T .

In the above two settings, the distribution of M represents normal and Laplace

distribution with mean 0 and variance σ2
u. By using the two-stage corrected kernel

estimation method in the absence of measurement error in Section 2.3, it is easy

to formulate a counterpart two-stage estimation method when data {Y, T, X}n
j=1 are

available, and also a naive two-stage method based on error-prone data {Y, T, W}n
j=1.

Denote by (β̂RT,1, ĝRT(·)) the error-free counterpart of our proposed two-stage esti-

mates, (β̂CKT,1, ĝCKT(·)), and by (β̂NVT,1, ĝNVT(·)) the naive estimates.

Figures 3.13 and 3.14 depict on the left panels, when U ∼ Laplace(0, σ2
u) and

U ∼ N(0, σ2
u), respectively, boxplots of (β̂NVT,1, β̂CKT,1, β̂RT,1) from 300 MC replicate

data sets, with (F3) being the mode regression model for Y . Like what are observed

for the one-stage estimation methods, the proposed two-stage estimation method

yields more reliable estimator for the covariate effect in the linear part of the mode

regression model than that from the naive two-stage method. It is worth pointing

out that, because g(t) = β0 + g∗(t) in the context of two-stage estimation, where

g∗(t) is estimated in the first stage that is free of measurement error complication, we

have the same ĝ∗(t) for the proposed method as those from its naive counterpart and

error-free counterpart. And thus ĝ∗
CKT(t) differs from ĝ∗

NVT(t) and ĝ∗
RT(t) only due to

the differences in estimates for β0. The right panels in Figures 3.13 and 3.14 are box-

plots of the empirical squared errors associated with (ĝNVT(·), ĝCKT(·), ĝRT(·)), which

indicate improved estimates for β0 from the proposed two-stage estimation method

compared to the naive method. Recall that we only have the two-dimensional CV

procedure proposed for the two-stage estimation method to choose (h, k). Table 3.7

shows the numerical result of the two-stage estimation method across 300 repetitions

70



www.manaraa.com

for Laplace measurement error and normal measurement error under (F3), respec-

tively, when n = 200. The same story as in Figures 3.13 and 3.14 can be found in

Table 3.7.

Table 3.7: Averages of parameter estimates from the two-stage method
over 300 repetitions under (F3) when n = 200. Numbers in parentheses
are (10 × standard errors) associate with the averages. The truth is
β0 = 1, β1 = 3.

75% 85% 95%
β0 β1 NE2 β0 β1 NE2 β0 β1 NE2

U ∼ N(0, σ2)
Naive 0.52 1.72 0.30 0.68 2.08 0.30 0.82 2.50 0.28

(0.19) (0.27) (0.18) (0.11) (0.25) (0.12) (0.17) (0.23) (0.12)
CK 0.79 2.39 0.26 0.87 2.59 0.27 0.88 2.76 0.24

(0.18) (0.27) (0.10) (0.16) (0.22) (0.11) (0.14) (0.17) (0.10)
U ∼ Laplace(0, σ2)

Naive 0.64 1.95 0.28 0.71 2.19 0.29 0.83 2.58 0.25
(0.18) (0.28) (0.11) (0.18) (0.25) (0.12) (0.16) (0.22) (0.10)

CK 0.90 2.77 0.27 0.91 2.81 0.26 0.91 2.78 0.25
(0.18) (0.28) (0.10) (0.16) (0.23) (0.11) (0.14) (0.17) (0.11)

TRUE 0.94 2.79 0.27
(0.15) (0.17) (0.12)

As the sample size n increases to 400, Figures 3.15 depicts the boxplots of the

estimates (β̂CKT,1, NE2
CKT) in the presence of Laplace measurement error. Figure

3.16 shows, when n = 400, the estimates (β̂CKT,1, NE2
CKT) in the presence of nor-

mal measurement error. When comparing with Figures 3.13 and 3.14, the bias and

variance in Figures 3.15 and 3.16 are smaller. Table 3.8 shows summary statistics

for results from the two-stage estimation method across 300 repetitions for Laplace

measurement error and normal measurement error under (F3), respectively, when

n = 400. It tells the same story as in Figures 3.15 and 3.16. For completeness, we

provide in Appendix E figures and tables like Figures 3.13 and 3.14, Tables 3.7 and

3.8 for results when the responses are generated according to (F4).

Finally, we compare our proposed non-naive estimation methods with each other,

including the corrected kernel one-stage estimation (CKO) method coupled with the

two-dimensional CV procedure for choosing tuning parameters, the same estimation

method (CKO) with tuning parameters chosen via the two-layer procedure, and the

corrected kernel two-stage estimation (CKT) method. In the two-layer tuning pa-
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Figure 3.13: Two dimensional cross validation tuning parameter selection. Under
the simulation setting (F3) and the sample size n = 200. Boxplots of estimates
of β1 (on the left panels) and estimates of NE2 (on the right panels) when U is
Laplace measurement error at three levels of reliability ratios (from the top row to
the bottom row), λ = 0.75, 0.85, 0.95. Within each panel, the three estimates (from
left to right) result from the naive two-stage method (NAIVE), the corrected kernel
two-stage method (CKT), and two-stage (RT) in the absence of measurement error,
respectively.
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Figure 3.14: Two dimensional cross validation. Under the simulation setting (F3)
and the sample size n = 200. Boxplots of estimates of β1 (on the left panels) and
estimates of NE2 (on the right panels) when U is Normal measurement error at three
levels of reliability ratios (from the top row to the bottom row), λ = 0.75, 0.85, 0.95.
Within each panel, the three estimates (from left to right) result from the naive two-
stage method (NAIVE), the corrected kernel two-stage method (CKT), and two-stage
method (RT) in the absence of measurement error, respectively.
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Figure 3.15: Two dimensional cross validation tuning parameter selection. Under
the simulation setting (F3) and the sample size n = 400. Boxplots of estimates
of β1 (on the left panels) and estimates of NE2 (on the right panels) when U is
Laplace measurement error at three levels of reliability ratios (from the top row to
the bottom row), λ = 0.75, 0.85, 0.95. Within each panel, the three estimates (from
left to right) result from the naive two-stage method (NAIVE), the corrected kernel
two-stage method (CKT), and two-stage (RT) in the absence of measurement error,
respectively.
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Figure 3.16: Two dimensional cross validation. Under the simulation setting (F3)
and the sample size n = 400. Boxplots of estimates of β1 (on the left panels) and
estimates of NE2 (on the right panels) when U is Normal measurement error at three
levels of reliability ratios (from the top row to the bottom row), λ = 0.75, 0.85, 0.95.
Within each panel, the three estimates (from left to right) result from the naive two-
stage method (NAIVE), the corrected kernel two-stage method (CKT), and two-stage
method (RT) in the absence of measurement error, respectively.
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Table 3.8: Averages of parameter estimates from the two-stage estima-
tion method over 300 repetitions under (F3) when n = 400. Numbers in
parentheses are (10 × standard errors) associate with the averages. The
truth is β0 = 1, β1 = 3.

75% 85% 95%
β0 β1 NE2 β0 β1 NE2 β0 β1 NE2

U ∼ N(0, σ2)
Naive 0.52 1.72 0.17 0.66 2.07 0.16 0.83 2.54 0.14

(0.15) (0.21) (0.06) (0.14) (0.19) (0.06) (0.12) (0.17) (0.05)
CK 0.79 2.39 0.14 0.87 2.63 0.12 0.90 2.78 0.12

(0.12) (0.17) (0.05) (0.11) (0.15) (0.05) (0.10) (0.10) (0.05)
U ∼ Laplace(0, σ2)

Naive 0.59 1.95 0.14 0.66 2.07 0.16 0.82 2.55 0.14
(0.14) (0.24) (0.05) (0.14) (0.20) (0.06) (0.12) (0.17) (0.05)

CK 0.92 2.81 0.13 0.93 2.82 0.14 0.92 2.81 0.12
(0.13) (0.20) (0.04) (0.11) (0.15) (0.05) (0.10) (0.10) (0.05)

TRUE 0.95 2.83 0.14
(0.11) (0.14) (0.05)

rameters selection procedure, the estimated function from the two-stage estimation

method, ĝCKT(t), is used as the pilot estimate g̃(t). Figures 3.17 and 3.18 show such

comparison with Laplace measurement error and normally distributed measurement

error, respectively, when (F1) is the mean model for the response. When the tuning

parameters are chosen via the two-layer procedure, the one-stage estimation method

yields similar estimates for β1 as those from the two-stage estimation method. This

may not be surprising because ĝCKT(t) is treated as a reference for estimating g(t)

when choosing the bandwidth h in the first layer of the two-layer tuning parameters

selection procedure. This strategy also leads to less variable ĝCKO(t) compared to

when the two-dimensional CV procedure is used to choose (h,k). Similar patterns

of the comparison between these three approaches are observed when the response is

generated according to (F2).

3.6 Real Data Analysis

In this section, the proposed methods is applied to the Framingham data (https:

//www.stat.tamu.edu/~carroll/data.php). The data are from n = 1615 males.

We focus on studying one’s impact of the serum cholesterol (X) and age (T ) on

his average systolic blood pressure in a fixed two-year period (Y ). Since the serum
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Figure 3.17: Boxplots of estimates for β1 (on the left panels) and NE2 (on the
right panels) three non-naive approaches: the one-stage estimation method paired
with the two-dimensional CV tuning parameters selection (CKO-1), the one-stage
estimation method paired with the two-layer tuning parameters selection (CKO-2),
and the two-stage estimation method (CKT). Responses are generated according to
(F3) and U ∼ Laplace(0, σ2

u), with λ = 0.75 (top row), 0.85 (middle row), and 0.95
(bottom row).
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Figure 3.18: Boxplots of estimates for β1 (on the left panels) and NE2 (on the
right panels) three non-naive approaches: the one-stage estimation method paired
with the two-dimensional CV tuning parameters selection (CKO-1), the one-stage
estimation method paired with the two-layer tuning parameters selection (CKO-2),
and the two-stage estimation method (CKT). Responses are generated according to
(F3) and U ∼ N(0, σ2

u), with λ = 0.75 (top row), 0.85 (middle row), and 0.95 (bottom
row).
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cholesterol usually is measured with error, we used the average of the cholesterols

as a surrogate (W ) of the subject’s serum cholesterol. The histogram in Figure 3.19

represents an underlying skewed distribution for the response.
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Figure 3.19: The histogram of systolic blood pressure for the Framingham data.

For illustration purpose, we consider a partially linear mode regression model for

the mode of Yj given Xj and Tj, where Xj is not observed but its error-contaminated

surrogate Wj is, where Wj =
2∑

k=1
Wj,k/2, in which Wj,k is subject j′s kth serum choles-

terol, for k = 1, 2 and j = 1, · · · , 1615. Based on the two replicate measures for each

underlying Xj, the variance of measurement errors associated with Wj is estimated

via one half of
n∑

j=1

2∑
k=1

(Wj,k − Wj)2/n. This gives an estimate of the measurement

error variance as σ̂2 = 0.13, and the corresponding estimated reliability ratio being

0.87.

We carry out the partially linear regression analysis using the naive method of

one-stage estimation method and two-stage estimation method, and apply the cor-

rected kernel methods, respectively. When implementing the one-stage estimation

method, we choose the tuning parameters using the two-dimensional cross validation

method and the two-layer method, respectively. When implementing the two-stage
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estimation method, we employ the two dimensional cross validation method to select

the tuning parameters. Figure 3.20 shows the estimate of g(T ) versus T resulting

from the two-stage estimation method and the one-stage method with tuning param-

eters chosen by the two-layer tuning parameter selection, respectively. Figure 3.21

depicts the estimate of g(T ) versus T based on the one-stage estimation method with

two dimensional cross validation tuning parameter selection and two-layer tuning pa-

rameter selection, respectively. In the two-layer tuning parameter selection method,

the pilot estimate for g(T ) need in the first step is the estimated function from the

two-stage estimation method.
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Figure 3.20: Two estimated g(T ) from two proposed estimation methods account-
ing for measurement error. The black solid line represents the estimated curve by
using the one-stage corrected kernel method combined with two-layer tuning param-
eter selection. Under the same estimation method and tuning parameter selection,
the green band represents the 95% confidence interval of ĝ(T ) obtained by bootstrap
method. The black dash line represents the estimated curve resulting from the two-
stage estimation method. Under the same estimation method and tuning parameter
selection, the grey band represents the 95% confidence interval of ĝ(T ).

80



www.manaraa.com

6

7

8

30 40 50 60
age

B
lo
od
P
re
ss
ur
e

Figure 3.21: Two estimated g(T ) from two proposed estimation methods account-
ing for measurement error. The black dash line represents the estimated curve by
using the one-stage corrected kernel method combined with two-layer tuning parame-
ter selection. Under the same estimation method and tuning parameter selection, the
green band represents the 95% confidence interval of ĝ(T ) obtained by a bootstrap
method. The black solid line represents the estimated curve result from the one-stage
estimation method with two dimensional cross validation method. Under the same
estimation method and tuning parameter selection, the red band represents the 95%
confidence interval of ĝ(T ).

Table 3.9 shows the estimates of the covariate effect associated with choles-

terols obtained from the naive one-stage estimation method and two-stage estima-

tion method, and estimates from the corrected kernel methods, respectively. These

results suggest that both proposed methods produce estimates of the covariate ef-

fect that imply a stronger association between the serum cholesterol and the systolic

blood pressure than the naive methods. In particular, compared the the one-stage

naive method with two dimensional cross validation tuning parameter selection, the

estimated covariate effect from the one-stage corrected kernel method with two di-

mensional cross validation tuning parameter selection increases by 6.5%. Compared
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with the covariate effect estimate from the one-stage naive method with two-layer

tuning parameter selection, the estimate from the one-stage corrected kernel with

two-layer tuning parameter selection method increases by 0.86%. Compared with the

estimate from the two-stage naive method, the estimate for the covariate effect from

the two-stage corrected kernel method increases by 21.0%.

Table 3.9: Regression coefficient estimates resulting from the one-stage naive
method and the one-stage corrected kernel method with two dimensional cross val-
idation tuning parameter selection method are under One-CV, the one-stage naive
method and the one-stage corrected kernel method with two-layer tuning parameter
selection method are under One-ISE-CV, the two-stage naive method and the two-
stage corrected kernel method are underTwo-CV. Numbers in parentheses are (10 ×
standard errors) associate with the estimates

One-CV One-ISE-CV Two-CV
Naive 0.093(0.044) 0.117(0.014) 0.105(0.020)
CK 0.099(0.006) 0.118(0.018) 0.127(0.022)

3.7 Discussion

We have proposed two methods in this chapter to take care of the case that the

parametric part X of the model has measurement error and the nonparametric part

T is error-free. An interesting research area is to consider partially linear model

models with error-prone T . Furthermore, there is only one nonparametric part T

added in the model setting. In practice, a couple of more nonparametric parts can

be included in the model. Consequently, another research problem, which focuses on

developing the methodology to estimate the covariate effect in the presence of many

nonparametric parts, is raised up and remains to be an open problem.

In Chapters 1 and this chapter, mode regression problems involving error-prone

covariates are tackled. In addition to unobserved covariates, in a regression model, the

response variable sometimes may not be observed either and the estimation based on

this type of data is also worth discussing. A practical scenario that gives rise to this

complication with unobservable responses is the so-called group testing (Dorfman,

82



www.manaraa.com

1943). In the next chapter, local polynomial estimation in mean regression models

for group testing data with error-free covariates will be discussed.
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Chapter 4

Local Polynomial Mean Regression Using

Pooled Responses

Group testing, also known as pooled testing, originally is proposed by Dorfman

(1943) to detect sypilis in US soldiers during World War II. It has received increasing

attention in disease screening (Gastwirth and Hammick, 1989; Dhand et al., 2010),

drug discovery (Remlinger et al., 2006), and genetics (Chi et al., 2009) in the past

few decades. In a group testing design, instead of testing the presence of a disease

individually, the test is conducted on a pool of individuals. This pooling test has been

recognized as a cost-effective strategy to perform large-scale screening for rare infec-

tious diseases. Besides being cost effective, pooling test is also efficient when it comes

to measuring assays with limits of detectation and can reduce the impact of outliers

in the sample (Schisterman et al., 2011). Because of these benefits, lots of research

activities are promoted. One interesting research topic is the regression analysis for

group testing data. Chen et al. (2009) and McMahan et al. (2013) considered gen-

eralized linear regression model using binary pooling responses. Delaigle and Zhou

(2015) considered covariates whose values are aggregated and proposed parametric

and nonparametric estimators of the conditional prevalence. Other nonparametric

regression (Delaigle and Meister, 2011; Delaigle and Hall, 2012) and semi-parametric

regression (Delaigle et al., 2014; Wang et al., 2014) methodologies are also developed

to analyze group testing data.

However, all research work aforementioned focus on binary responses. Less study
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have been done for cases where the response variable is a continuous pooled response

(Vexler et al., 2008; Mitchell et al., 2014; Liu et al., 2017). In this chapter, we consider

group testing studies where a continuous pooled response is observed for each group,

and individual continuous responses in a group are unobserved.

4.1 Models and Data

The goal of our study is to construct nonparametric estimators for the conditional

mean function, m(x) = E(Y |X = x), where Y is a continuous response of an experi-

mental unit, e.g., an individual’s macrophage inhibitory protein (MIP)-1α level in the

Collaborative Perinatal Project (Whitecomb et al., 2007), and X denotes covariates

associated with the individual, such as an individual’s age, race, and miscarriage sta-

tus in the CPP. Suppose that there are a total of N individuals in a study, and they

are divided into J groups, with group j containing nj individuals, for j = 1, · · · , J .

Define Yjk as the unobserved continuous response of subject k in group j, and as-

sume that Xjk follows a distribution specified by the probability density function

(pdf) fX(x), for j = 1, · · · , J, k = 1, · · · , cj. For ease of exposition, we consider

a univariate covariate associated with each subject for the majority of this chapter.

Note that, before the test is applied, the specimen (e.g., blood, water, urine) are

pooled together. Consequently, Yji is not observed in studies considered here, and

instead the observed result of the test, denoted by Zj, is

Zj = 1
cj

cj∑
k=1

Yjk. (4.1)

It is evident from (4.1) that the observed value Zj obtained from the pooled specimen

has less variability than the individual values in the jth pool. In this case, the

relationship between Yjk and Zj can be described by a Berkson measurement error

model (Carroll et al., 2006).
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Suppose that the regression model of Yjk given Xjk is specified as follows,

Yjk = m(Xjk) + ϵjk, (4.2)

where m(Xjk) is the conditional mean function, E(ϵjk|Xjk) = 0, V ar(ϵjk|Xjk) = σ2,

Xjk and ϵjk, are independent. The problem of interest in this chapter is to estimate

m(x) based on the observed group data {(Zj, X̃j)}J
j=1, where X̃j = (Xj,1, · · · , Xj,cj

),

for j = 1, · · · , J .

4.2 Proposed Methods

When the observations (Xjk, Yjk), for j = 1, · · · , J, k = 1, · · · , cj are available, Fan

and Gijbels (1996) derived a p-th order local polynomial estimator for m(x), which

can be succinctly written in the matrix form as follow,

m̂(x) = eT
1 S−1T , (4.3)

where e1 is a (p + 1) × 1 vector with 1 in the first entry and 0 in the remaining p

entries,

S =


S0,0(x) . . . S0,p(x)

... . . . ...

Sp,0(x) . . . Sp,p(x)

,

and T = (T1,0(x), . . . , T1,p(x))T , in which
Sℓ1,ℓ2(x) = N−1

J∑
j=1

cj∑
k=1

(
Xji − x

h

)ℓ1+ℓ2

Kh (Xji − x), for ℓ1, ℓ2 = 0, 1, . . . , p,

T1,ℓ(x) = N−1
J∑

j=1

cj∑
k=1

Yij

(
Xji − x

h

)ℓ

Kh (Xji − x), for ℓ = 0, 1, . . . , p,

(4.4)

and Kh(x) = h−1K(x/h) with K(·) being a symmetric kernel function and h being

the bandwidth.

In the practice of group testing, because individual responses Yjk, j = 1, · · · , J, k =

1, · · · , cj, are not observed, the estimator in (4.3) cannot be calculated. When the
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observed data are {(Zj, X̃j)}J
j=1, we consider formulating local polynomial estimators

for m(x) from two angles. The first two estimators originate from the mean model

E(Zj|X̃j). The third estimator is motivated by the strategy in Lin and Wang (2018),

following which a local polynomial estimator of m(x) can be constructed based on

the mean model E(cjZj|Xjk).

The first estimator

By the definition of the pooled response, Zj, in (4.1), one has

E(Zj|X̃j) = 1
cj

cj∑
k=1

m(Xji), j = 1, · · · , J, (4.5)

where X̃j = (Xj1, · · · , Xjcj
), j = 1, · · · , J . Suppose that the (p + 1)-th derivative

of m(Xji) at the point x exists. A p-th order Taylor expansion of m(Xjk) around x

gives, for k = 1, . . . , cj and j = 1, . . . , J ,

m(Xjk) ≈ m(x) + m(1)(x)(Xjk − x) + · · · + mp(x)
p! (Xjk − x)p. (4.6)

Plugging (4.6) in (4.5), one has

E(Zj|X̃j) ≈ m(x) + m(1)(x) 1
cj

cj∑
k=1

(Xjk − x) + · · · + mp(x)
p!

1
cj

cj∑
k=1

(Xjk − x)p. (4.7)

To fit this polynomial, we follow the weighted least squares method in Fan and Gijbels

(1996) to estimate m(x) and its derivatives by minimizing

Q1(β) =
J∑

j=1

[
Zj −

{ p∑
ℓ=0

βℓ
1
cj

cj∑
k=1

(Xjk − x)ℓ

}]2 { 1
cj

cj∑
k=1

Kh(Xjk − x)
}

, (4.8)

where βℓ = m(ℓ)/ℓ!, for ℓ = 0, 1, · · · , p. Since there are multiple covariate values

within one group, the average weight of group j is defined as 1
cj

cj∑
i=1

Kh(Xjk − x), j =

1, · · · , J . A p-th order local polynomial estimator of m(x) is given by

m̂1(x) = eT
1 S−1

1 T1, (4.9)
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where

S1(x) = D1(x)T K1(x)D1(x) = [S1,ℓ1,ℓ2(x)]ℓ1,ℓ2=0,...,p ,

T1(x) = D1(x)T K1(x)Z = (T1,0(x), T1,1(x), . . . , T1,p(x))T , in which

Z = (Z1, Z2, . . . , ZJ)T ,

D1(x) =



1 X̄1 − x c−1
1

c1∑
k=1

(X1k − x)2 . . . c−1
1

c1∑
k=1

(X1k − x)p

... ... ... . . .
...

1 X̄J − x c−1
1

cJ∑
k=1

(XJk − x)2 . . . c−1
J

cJ∑
k=1

(XJk − x)p


,

K1(x) = diag
(

c−1
1

c1∑
k=1

Kh(Xjk − x), . . . , c−1
J

cJ∑
k=1

Kh(XJk − x)
)

,

in which X̄j = c−1
j

cj∑
k=1

Xjk, for j = 1, . . . , J . Elaborating the matrix multiplications

shows that

S1,ℓ1,ℓ2(x)

=
J∑

j=1

{
c−1

j

cj∑
k=1

(Xjk − x)ℓ1

}{
c−1

j

cj∑
k=1

(Xjk − x)ℓ2

}{
c−1

j

cj∑
k=1

Kh(Xjk − x)
}

,

for ℓ1, ℓ2 = 0, 1, · · · , p,

T1,ℓ(x)

=
J∑

j=1
Zj

{
c−1

j

cj∑
k=1

(Xjk − x)ℓ

}{
c−1

j

cj∑
k=1

Kh(Xjk − x)
}

, for ℓ = 0, 1, . . . , p.

(4.10)

The second estimator

Instead of using the arithmetic mean 1
cj

cj∑
i=1

Kh(Xjk − x), j = 1, · · · , J , as the

weight function in (4.8), we consider to employ the product
cj∏

i=1
Kh(Xjk − x), j =

1, · · · , J , as the weight to construct a new object function as follows,

Q2(β) =
J∑

j=1

[
Zj −

{ p∑
ℓ=0

βℓ
1
cj

cj∑
k=1

(Xjk − x)ℓ

}]2 { 1
cj

cj∏
k=1

Kh(Xjk − x)
}

.
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By minimizing Q2(β), a p-th order local polynomial estimator of m(x) can be given

by

m̂2(x) = eT
1 S−1

2 T2, (4.11)

where

S2(x) = D2(x)T K2(x)D2(x) = [S2,ℓ1,ℓ2(x)]ℓ1,ℓ2=0,...,p ,

T2(x) = D2(x)T K2(x)Z = (T2,0(x), T2,1(x), . . . , T2,p(x))T , in which

Z = (Z1, Z2, . . . , ZJ)T ,

D2(x) =



1 X̄1 − x c−1
1

c1∑
k=1

(X1k − x)2 . . . c−1
1

c1∑
k=1

(X1k − x)p

... ... ... . . .
...

1 X̄J − x c−1
1

cJ∑
k=1

(XJk − x)2 . . . c−1
J

cJ∑
k=1

(XJk − x)p


,

K2(x) = diag
(

c1∏
k=1

Kh(Xjk − x), . . . ,
cJ∏

k=1
Kh(XJk − x)

)
.

Elaborating the matrix multiplications shows that

S2,ℓ1,ℓ2(x) =
J∑

j=1

{
c−1

j

cj∑
k=1

(Xjk − x)ℓ1

}{
c−1

j

cj∑
k=1

(Xjk − x)ℓ2

}{ cj∏
k=1

Kh(Xjk − x)
}

,

for ℓ1, ℓ2 = 0, 1, · · · , p,

T2,ℓ(x) =
J∑

j=1
Zj

{
c−1

j

cj∑
k=1

(Xjk − x)ℓ

}{ cj∏
k=1

Kh(Xjk − x)
}

, for ℓ = 0, 1, . . . , p.

(4.12)

The third estimator

Instead of considering the conditional mean E(Zj|X̃j) as in the first two proposed

methods, one may alternatively consider the conditional mean E(cjZj|Xjk). By the
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definition of Zj in (4.1), one has

E(cjZj|Xjk = x)

=
cj∑

ℓ=1
E(Yjℓ|Xjk = x)

=
cj∑

ℓ=1,ℓ̸=k

E(Yjℓ|Xjk = x) + E(Yjk|Xjk = x)

=
cj∑

ℓ=1,ℓ̸=k

E(Yjℓ) + m(x), by (4.2) and assuming Yjℓ ⊥ Xjk for ℓ ̸= k,

= (cj − 1)µ + m(x), assuming µ = E(Yjℓ) for ℓ = 1, · · · , cj and j = 1, · · · , J.

Hence,

E{cjZj − (cj − 1)µ|Xjk = x} = m(x). (4.13)

Viewing µ known for now, (4.13) suggests that m(x) is the mean function of a new

response, R̃j = cjZj − (cj − 1)µ, given Xjk = x. One can then follow the construc-

tion of the weighted least squares objective function for developing local polynomial

estimators in Fan and Gijbels (1996) to formulate an objective function for inferring

m(x) using {(R̃j, X̃j)}J
j=1. With µ actually unknown, a natural surrogate for R̃j is

Rj = cjZj − (cj − 1)û, where û = N−1
J∑

j=1
cjZj and N =

J∑
j=1

cj. It is worth pointing

out that R̃j only depends on the j-th pooled response, whereas Rj depends on all

J pooled responses. Following the construction of the p-th order local polynomial

estimator for m(x), one now has the weighted least squares objective function given

by

Q3(β) =
J∑

j=1

cj∑
k=1

{
Rj −

p∑
ℓ=0

βℓ (Xjk − x)ℓ

}2

Kh(Xjk − x). (4.14)

Here, we are mainly interested in estimating m(x) = β0 = eT
1 β, where β = (β0, . . . , βp)T .

Minimizing Q3(β) with respect to β and extracting the first entry of the minimizer

yields the following p-th order local polynomial estimator for m(x),

m̂3(x) = eT
1 S−1

3 (x)T3(x), (4.15)
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where

S3(x) = D3(x)T K3(x)D3(x) = [S3,ℓ1,ℓ2(x)]ℓ1,ℓ2=0,...,p ,

T3(x) = D3(x)T K3(x)R = (T3,0(x), T3,1(x), . . . , T3,p(x))T , in which

R = (R11T
c1 , . . . , RJ1T

cJ
),

D3(x) =



1 X11 − x (X11 − x)2 . . . (X11 − x)p

... ... ... . . .
...

1 X1,c1 − x (X1,c1 − x)2 . . . (X1,c1 − x)p

... ... ... . . .
...

1 XJ1 − x (XJ1 − x)2 . . . (XJ1 − x)p

... ... ... . . .
...

1 XJ,cJ
− x (XJ,cJ

− x)2 . . . (XJ,cJ
− x)p



,

K3(x) =



K1,1(x) 0c1,c2 . . . 0c1,cJ

0c2,c1 K1,2(x) . . . 0c2,cJ

... ... . . . ...

0cJ ,c1 0cJ ,c2 . . . K1,J(x)


, in which

K1,j = diag(Kh(Xj1 − x), . . . , Kh(Xj,cj
− x)), for j = 1, . . . , J.

In the above, 0s×t denotes an s × t matrix of zero’s, and 1t denotes a t × 1 vector of

one’s. Elaborating the matrix multiplications reveals that
S3,ℓ1,ℓ2(x) =

J∑
j=1

cj∑
k=1

(Xji − x)ℓ1+ℓ2 Kh (Xji − x), for ℓ1, ℓ2 = 0, 1, . . . , p,

T3,ℓ(x) =
J∑

j=1

cj∑
k=1

Rj (Xji − x)ℓ Kh (Xji − x), for ℓ = 0, 1, . . . , p.

(4.16)
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4.3 Simulation Study

Bandwidth Selection

It has been well acknowledged that it is crucial to select an appropriate bandwidth

in kernel-based nonparametric estimation. In this chapter, the leave-one-out cross-

validation (CV) method is employed to select the bandwidth h in the local polynomial

estimator, with the cross validation criterion one minimizes with respect to h given

by

CV(h) = J−1
J∑

j=1
cj

{
Zj − c−1

j

cj∑
k=1

m̂(−j)(xjk)
}2

. (4.17)

Here m̂(−j) denotes the local polynomial estimator, resulting from a considered pro-

posed method, computed based on the observed data excluding the j-th group data

from the sample.

Simulation Results

In the simulation study, we compare realizations of the three proposed estimators

based on data generated according to the following model configuration,

[Y |X = x] ∼ N(m(x), 0.22), where m(x) = x2 + x3, X ∼ uniform(−0.5, 0.5).

To generate pooled observations, we set N = 1000 and specify a common group size,

cj = c for all j = 1, · · · , J , where c = 5. Different levels of savings can be obtained by

choosing different group sizes. For example, when comparing with individual testing

in which c = 1, the group testing when c = 5 indicates an 80% reduction of the testing

cost. Under this simulation setting, 500 Monte Carlo (MC) replicates of sample size

N = 1000 and group size c = 5 are generated.

Denote by m̂[·] one of the three estimates. We compare the performance of the

three estimators with regard to the quality of the estimation of m(x) at individual

x, as well as the quality of the entire regression curve estimation over the domain
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Table 4.1: Averages of point-wise absolute error and approximated
ISE over 500 repetitions. Numbers in parentheses are 10 × standard
deviations associated with the averages. Local constant estimates
correspond to p = 0. Local linear estimates correspond to p = 1.

xL 25th 50th 75th xU ISE

p = 0

m̂1
0.035 0.029 0.068 0.085 0.245 0.006

(0.113) (0.096) (0.091) (0.062) (0.121) (0.004)

m̂2
0.060 0.018 0.045 0.022 0.210 0.004

(0.340) (0.138) (0.210) (0.183) (0.576) (0.020)

m̂3
0.037 0.022 0.021 0.024 0.091 0.001

(0.270) (0.172) (0.161) (0.180) (0.478) (0.007)

p = 1

m̂1
0.094 0.015 0.070 0.037 0.187 0.005

(0.407) (0.111) (0.102) (0.181) (0.433) (0.011)

m̂2
0.072 0.017 0.060 0.043 0.144 0.004

(0.529) (0.132) (0.192) (0.198) (0.673) (0.015)

m̂3
0.054 0.022 0.024 0.024 0.061 0.001

(0.432) (0.190) (0.194) (0.178) (0.486) (0.009)

of the function. More specifically, first, we calculate the Monte Carlo average of

the point-wise mean squared error (MSE) to monitor the quality the estimation of

m(x) at the minimum, 25th percentile , 50th percentile, 75th percentile, and the

maximum of X. Second, an approximate of the integrated squared error (ISE), ISE =∫ xU
xL

{m̂[·] − m(x)}2dx is employed to describe the quality of the entire regression curve

m̂(x). Note that, [xL, xU ] is the interval of the true covariate X ′s value of interest.

This approximated ISE is given by
M∑

k=0
m̂[·](xk) − m(xk)2∆, where M is the greatest

integer less than (xU − xL)/∆, ∆ is the partition resolution, xk = xL + k∆, k =

1, · · · , M .

Table 4.1 presents Monte Carlo averages of the aforementioned point-wise MSE

and ISE across 500 replicates along with their standard deviations. By comparing

local constant estimator and local linear estimator in terms of ISE, one can see that the

local linear estimator provides a better overall fitting. Among all proposed three local

linear estimators, based on how their ISEs compare, our third estimator provides the

best overall fitting. As for the variability, under the considered simulation setting, our

first estimator outperforms the other two proposed method and produces the smallest
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variability. When inspecting point-wise MSE’s at various points associated with the

three estimators, one can see the local linear estimators do not necessarily outperform

the local constant estimators. For example, the local linear estimator outperform the

local constant estimator at x = xU . However, the local constant estimators shows

advantage at x = xL when x is the second quantile.

Figures 4.1 and 4.2 present graphs to describe the overall fitting and point-wise

fitting of all three estimators. Similar stories can be found in boxplots in Figures

4.1 and 4.2. Besides these boxplots, one can also see the overall fitting in panel

(g), (h) and (f). Each of these three panels presents an estimated curves resulting

from a proposed method, where the estimated curve is chosen such that its ISE is

the median of all 500 collected ISE’s for the corresponding method. In Figure 4.1,

our first estimator and second estimator show less advantage at the boundary of

the covariate support, the third estimator provides a great fit for the mean of the

response. Similar phenomenon can be observed in Figure 4.2.
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Figure 4.1: Simulation results using local constant regression for three estimators
m̂1, m̂2 and m̂3, respectively. Panel (a): boxplots of ISEs. Panels (b) and (f):
boxplots of point-wise absolute error at xL and xU , respectively. Panels (c), (d) and
(e): boxplots of point-wise absolute error at 25th quantile, 50th quantile, 75th quantile,
respectively. Panel (g), (h) and (i): Fitted curves whose ISEs equal to Median of
ISEs over 500 repetitions of m̂1, m̂2 and m̂3. (dashed lines are the estimated curves
for the median ISEs, solid lines for the truth)
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Figure 4.2: Simulation results using local linear regression when p = 1 for three
estimators m̂1, m̂2 and m̂3, respectively. Panel (a): boxplots of ISEs. Panels (b)
and (f): boxplots of point-wise absolute error at xL and xU , respectively. Panels
(c), (d) and (e): boxplots of point-wise absolute error at 25th quantile, 50th quantile,
75th quantile, respectively. Panel (g), (h) and (i): Fitted curves whose ISEs equal
to Median of ISEs over 500 repetitions of m̂1, m̂2 and m̂3. (dashed lines are the
estimated curves for the median ISEs, solid lines for the truth)
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Chapter 5

Conclusions and Future Study

This dissertation considers statistical inference in semiparametric and nonpara-

metric regression in the presence of measurement error. Chapter 1 proposes two

methods to infer the regression coefficients in a linear mode model for a response

given an error-prone covariate. The resultant inference for the covariate effect signif-

icantly improve over the naive inference from applying an existing method without

accounting for measurement error. Chapter 2 extends linear mode models to partially

linear mode models, and proposes two estimation procedures to estimate parametric

coefficients and the nonparametric function in a partially linear mode model. To

account for measurement error, following the work in Chapter 1, Chapter 3 apply the

idea of the corrected kernel method to obtain consistent estimators based on contami-

nated data in a partially linear model. Evidence from simulation studies suggest that

the two proposed methods can yield estimators for the unknowns in such models that

improve over naive estimators substantially. Instead of the classical measurement

error considered in the first three chapters, which relates the unobserved covariates

with their error-contaminated surrogates, in group testing studies with a continuous

response, we consider in Chapter 4 a Berkson measurement error model that relates

the unobserved individual response and the aggregated (pooled) response. In partic-

ular, Chapter 4 proposes an unobserved individual nonparametric estimation method

to estimate the mean of a response variable given individual error-free covariates.

Within the scope of this dissertation, as in Chapter 1, properties of the corrected

kernel estimators are studied from both empirical and theoretical perspectives. The

97



www.manaraa.com

theoretical properties of both parametric coefficients and nonparametric functions

resulting from the one-stage estimation method in Chapter 2 are studied by Zhao

et al. (2014) already. Theoretical properties of the proposed estimators accounting

for covariate measurement error are investigated in Chapter 3. Moreover, to show

the performance of the proposed methods in Chapter 3 under practical scenarios, a

real data analysis is presented.

This dissertation focuses on regression problems when the number of covariates is

smaller than the sample size. One interesting follow-up research topic, although

beyond the scope of this dissertation, is to consider these semi-/non-parametric re-

gression problems that involve high dimensional covariates. In settings with high

dimensional covariates, Zhao et al. (2014) propose a variable selection method in

partially linear mode regression in the absence of measurement error. But there is

no research in the existing literature regarding variable selection in a partially lin-

ear mode regression model in the presence of measurement error. Furthermore, in

Chapter 4, we only consider cases where covariates are free of measurement error. A

similar problem as those considered in Chapters 1 and 3 is to develop consistent esti-

mators for the mean of an unobserved individual response variable given error-prone

covariates. This comprises yet another future research branch.
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Appendix A

Proof of Theorem 1

For completeness, we repeat the conditions regarding g(ϵ|x) and the covariate

stated in Section 1.3 in the Chapter 2 below. For a scalar s, denote by s̃ the vector

(1, s)T.

(C1) The ℓ-th partial derivative of g(ϵ|x) with respect to (w.r.t.) ϵ, g(ℓ)(ϵ|x), is

continuously differentiable around ϵ = 0, for ℓ = 0, 1, 2, 3, and g(1)(0|x) = 0, for

all x.

(C2) As n → ∞, n−1∑n
j=1 g(0|Xj)X̃jX̃

T
j and n−1∑n

j=1 g(3)(0|Xj)X̃j converge in prob-

ability, and n−1∑n
j=1 g(2)(0|Xj)X̃jX̃

T
j converges in probability to a negative def-

inite matrix.

(C3) As n → ∞, n−1∑n
j=1 ∥X̃j∥4 = Op(1), where ∥ · ∥ denotes the Euclidean norm.

Addition conditions on the characteristic function of U and conditions on K(t) are

stated next. The first set of conditions given next are needed for proving Theorems

1 and 2 when U is ordinary smooth.

Conditions O:

(O1) As |t| → ∞, cb|t|−b−1/2 ≤ |ϕ(1)
U (t)| ≤ 2cb|t|−b−1.

(O2) As |t| → ∞, cb(b + 1)|t|−b−2/2 ≤ |ϕ(2)
U (t)| ≤ 2cb(b + 1)|t|−b−2.

(O3) As |t| → ∞, cb(b + 1)(b + 2)|t|−b−3/2 ≤ |ϕ(3)
U (t)| ≤ 2cb(b + 1)(b + 2)|t|−b−3.
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(O4)
∫

t2(2+b)ϕ2
K(t)dt < ∞, and

∫
t6ϕ2

K(t)dt < ∞.

The second set of conditions stated next are needed for proving Theorems 1 and

2 when U is super smooth.

Conditions S:

(S1) As |t| → ∞, d
(1)
0 |t|b

(1)
0 exp(−|t|b/d2) ≤ |ϕ(1)

U (t)| ≤ d
(1)
1 |t|b

(1)
1 exp(−|t|b/d2), for

some positive constants b
(1)
0 , b

(1)
1 , d

(1)
0 , and d

(1)
1 , where b

(1)
0 ≥ b0 and b

(1)
1 ≥ b1.

(S2) As |t| → ∞, d
(2)
0 |t|b

(2)
0 exp(−|t|b/d2) ≤ |ϕ(2)

U (t)| ≤ d
(2)
1 |t|b

(2)
1 exp(−|t|b/d2), for

some positive constants b
(2)
0 , b

(2)
1 , d

(2)
0 , and d

(2)
1 , where b

(2)
0 ≥ b

(1)
0 and b

(2)
1 ≥ b

(1)
1 .

(S3) As |t| → ∞, d
(3)
0 |t|b

(3)
0 exp(−|t|b/d2) ≤ |ϕ(3)

U (t)| ≤ d
(3)
1 |t|b

(3)
1 exp(−|t|b/d2), for

some positive constants b
(3)
0 , b

(3)
1 , d

(3)
0 , and d

(3)
1 , where b

(3)
0 ≥ b

(2)
0 and b

(3)
1 ≥ b

(2)
1 .

(S4) The support of ϕK(t) is [−1, 1].

The third set of conditions listed next are additional conditions needed to estab-

lish the asymptotic normality claimed in Theorem 2.

Conditions N:

(N1) The expectation E{U ℓg(β1U |x)}, for ℓ = 0, 1, 2, exists for all x.

(N2) The expectation E[{g(3)(0|X)X}2] exists.

(N3) As |t| → ∞, ϕU(t) is either purely real or pure imaginary.

(N4) There exist positive constants δ, e1, e2, and q such that |ϕK(t)| ≤ e1(1− t)q and

ϕK(t) ≥ e2(1 − t)q for t ∈ (1 − δ, 1).

Among the above four additional conditions, (N1) and (N2) for needed to establish

asymptotic normality of β̂CK when U is ordinary smooth; (N3) and (N4) are needed

108



www.manaraa.com

when U is super smooth, which are equivalent to Condition 3.1 iii)–v) in Fan and

Masry (1992).

As in the Chapter 2, all integrations are over the entire real line R unless otherwise

specified.

Theorem 1. Under conditions (C1)–(C3) and conditions in Lemma C, there exists

a maximizer of Q∗
h(β), denoted by β̂CK, such that, as n → ∞ and h → 0,

(i) when U follows an ordinary smooth distribution of order b, if nh7+2b → 0, then

∥β̂CK − β∥ = O(h2) + Op

√ 1
nh3+2b

 ; (A.1)

(ii) when U follows a super smooth distribution of order b,

if exp(2|β1|bh−b/d2))/(nhb6) → 0,

where b6 = max{3 − 2 min(b2, b3), 5 − 2 min(b2, b3, b4), 7 − 2 min(b2, b3, b4, b5)},

in which bℓ, for ℓ = 2, 3, 4, 5, are defined in Lemma C, then

∥β̂CK − β∥ = O(h2) + Op

exp
(

|β1|b

d2hb

)√
1

nh3−2 min(b2,b3)

 . (A.2)

Proof. Define a series of integrals that involve in the integrand the cosine function,

a power function tℓ1 , and the ℓ2-th derivative of τ(s) = −1/ϕU(s) evaluated at β1t/h

as follows,

IC(ℓ1,ℓ2)
j = 1

2π

∫
tℓ1 cos

(
Yj − βTW̃j

h
t

)
ϕK(t)τ (ℓ2)(β1t/h)dt, (A.3)

for nonnegative integers ℓ1 and ℓ2. For example, one can show using Euler’s formula

that, under the assumption stated in the Chapter 2 that ϕK(t) and ϕU(t) are even

functions, the deconvoluting kernel evaluated at (Yj − βTW̃j)/h,

K∗
(

Yj − βTW̃j

h

)
= 1

2π

∫
exp

(
−i

Yj − βTW̃j

h
t

)
ϕK(t)

ϕU(−β1t/h)dt,

is equal to −IC(0,0)
j . Similarly define another series of integrals that involve in the

integrand the sine function, a power function tℓ1 , and the ℓ2-th derivative of τ(s)
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evaluated at β1t/h as follows,

IS(ℓ1,ℓ2)
j = 1

2π

∫
tℓ1 sin

(
Yj − βTW̃j

h
t

)
ϕK(t)τ (ℓ2)(β1t/h)dt. (A.4)

To derive the convergence rate of β̂CK, the following derivatives of IC(ℓ1,ℓ2)
j and IS(ℓ1,ℓ2)

j

with respect to β are needed,

∂IC(ℓ1,ℓ2)
j

∂β
= h−1

IS(ℓ1+1,ℓ2)
j

 1

Wj

+ IC(ℓ1+1,ℓ2+1)
j

0

1


 ,

∂IS(ℓ1,ℓ2)
j

∂β
= h−1

−IC(ℓ1+1,ℓ2)
j

 1

Wj

+ IS(ℓ1+1,ℓ2+1)
j

0

1


 .

(A.5)

To reveal the convergence rate of β̂CK, denoted by rn, we aim to establish a

sufficient condition for ∥β̂CK − β∥ = Op(rn), which states that, for any given δ > 0,

there exists a constant c such that

P

{
sup

∥d∥=c
Q∗

h(β + rnd) < Q∗
h(β)

}
≥ 1 − δ. (A.6)

This sufficient condition motivates us to consider the difference ∆(rn) = Q∗
h(β +

rnd) − Q∗
h(β). In particular, a third-order Taylor expansion of ∆(rn) around zero

gives

∆(rn) = ∆(0) + rn∆(1)(0) + 0.5r2
n∆(2)(0) + 6−1r3

n∆(3)(r∗),

where r∗ lies between zero and rn, ∆(0) = 0,

∆(1)(0) = ∂Q∗
h(β̃)

∂β̃T

∣∣∣∣∣
β̃=β

d = KT
n d,

∆(2)(0) = dT ∂2Q∗
h(β̃)

∂β̃∂β̃T

∣∣∣∣∣
β̃=β

d = dTJnd,

∆(3)(r∗) = dTLndTd,
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in which, by (A.5),

Kn = ∂Q∗
h(β)

∂β
= 1

nh

n∑
j=1

∂

∂β
K∗

(
Yj − βTW̃j

h

)

= − 1
nh2

n∑
j=1

IS(1,0)
j

 1

Wj

+ IC(1,1)
j

0

1


 , (A.7)

Jn = ∂2Q∗
h(β)

∂β∂βT
(A.8)

= − 1
nh3

n∑
j=1

−IC(2,0)
j

 1 Wj

Wj W 2
j

+ IS(2,1)
j

0 1

1 2Wj

+ IC(2,2)
j

0 0

0 1


, (A.9)

Ln = − 1
nh3

n∑
i=1

−

 1 Wj

Wj W 2
j

 ∂IC(2,0)
j

∂β
+

0 1

1 2Wj

 ∂IS(2,1)
j

∂β
+

0 0

0 1

 ∂IC(2,2)
j

∂β


∣∣∣∣∣∣∣∣
β=β∗

= 1
nh4

n∑
j=1

IS(3,0)
j

 1 + W 2
j

Wj(1 + W 2
j )

+ IC(3,1)
j

 2Wj

1 + 3W 2
j



−IS(3,2)
j

 1

3Wj

− IC(3,3)
j

0

1



∣∣∣∣∣∣∣∣
β=β∗

= 1
nh4

n∑
j=1

 (1 + W 2
j )IS(3,0)

j + 2WjIC(3,1)
j − IS(3,2)

j

Wj(1 + W 2
j )IS(3,0)

j + (1 + 3W 2
j )IC(3,1)

j − 3WjIS(3,2)
j − IC(3,3)

j


∣∣∣∣∣∣∣∣
β=β∗

,

(A.10)

with β∗ lying between β and β + rnd, corresponding to r∗ lying between zero and rn.

In summary, we have

Q∗
h(β + rnd) − Q∗

h(β) = rnKT
n d + 0.5r2

ndTJnd + 6−1r3
ndTLndTd. (A.11)

In order to reveal rn that satisfies (A.6), we study the orders of Jn, Kn, and Ln

based on the mean-variance decomposition given by V = E(V ) + Op{
√

Var(V )}, for

a random variable V under regularity conditions. The means and variances of Jn, Kn

and Ln are derived in Appendix C, with results summarized in Lemma C.
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Define µ2 =
∫

t2K(t)dt. If the measurement error distribution is ordinary of order

b, by Lemma C, we have

Kn = µ2h
2

2n

n∑
j=1

g(3)(0|Xj)X̃j{1 + op(1)} + Op

(
1/

√
nh3+2b

)
,

Jn = 1
n

n∑
j=1

g(2)(0|Xj)X̃jX̃
T
j {1 + op(1)} + Op

(
1/

√
nh5+2b

)
,

Ln = Op(1) + Op

(
1/

√
nh7+2b

)
.

(A.12)

Based on these rates, by setting rn = h2 + 1/
√

nh3+2b, one can show that (A.11)

is dominated by the second term for a large enough c, which is negative definite

in probability by condition (C2). More specifically, the first term in the right-hand

side of (A.11) is of order O(r2
n), the second terms is 0.5r2

ndTJ∗d{1 + op(1)}, where

J∗ = limn→∞ n−1∑n
j=1 g(2)(0|j)X̃jX̃

T
j , and the third term is of order op(r2

n) provided

that nh7+2b → 0. Hence, for a large enough c, (A.6) holds for rn = h2 + 1/
√

nh3+2b.

In fact, the rate rn is determined by the rate of Kn, which has h2 as the order of the

bias of β̂CK and 1/
√

nh3+2b as the order of its standard error. This leads to (A.1).

If the measurement error distribution is super smooth of order b, by Lemma C,

we have

Kn = µ2h
2

2

n∑
j=1

g(3)(0|Xj)X̃j{1 + op(1)}

+Op

{√
exp(2|β1|bh−b/d2)/(nh3−2 min(b2,b3))

}
,

Jn = 1
n

n∑
j=1

g(2)(0|Xj)X̃jX̃
T
j {1 + op(1)}

+Op

{√
exp(2|β1|bh−b/d2)/(nh5−2 min(b2,b3,b4))

}
,

Ln = Op(1) + Op

{√
exp(2|β1|bh−b/d2)/(nh7−2 min(b2,b3,b4,b5))

}
,

(A.13)

where bℓ, for ℓ = 2, 3, 4, 5, are defined in Lemma C. Based on these rates, by setting

rn = h2 +
√

exp(2|β1|bh−b/d2)/(nh3−2 min(b2,b3)), one can show that (A.11) is again

dominated by the second term for a large enough c. Thus, for a large enough c, (A.6)

holds for rn = h2 +
√

exp(2|β1|bh−b/d2)/(nh3−2 min(b2,b3)). This proves (A.2).
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Appendix B

Proof of Theorem 2

Theorem 2. Under the same assumptions imposed in Theorem 1,

(i) if U follows an ordinary smooth distribution of order b,

√
nh3+2b

(
β̂CK − β − h2µ2J

∗−1Q/4
)

d−→ N(0, J∗−1KLJ∗−1); (B.1)

(ii) if U follows a super smooth distribution of order b,

{
Var(β̂CK)

}−1/2 (
β̂CK − β − h2µ2J

∗−1Q/4
)

d−→ N(0, 1), (B.2)

where Var(β̂CK) = O[exp{2|β1|b/(d2h
b)}/{nh3−2 min(b2,b3)}], and Σ−1/2 denotes

the inverse of the positive definite square root of a positive definite matrix Σ.

Proof. Because β̂CK maximizes Q∗
h(β) = (nh)−1∑n

j=1 K∗{(Yj − βTW̃j)/h}, one has

∂Q∗
h(β)

∂β
= ∂Q∗

h(β)
∂β

− 0

= ∂Q∗
h(β)

∂β
− ∂Q∗

h(β)
∂β

∣∣∣∣∣
β=β̂CK

= ∂2Q∗
h(β)

∂β∂βT

∣∣∣∣∣
β=β∗

(β − β̂CK),

where the last equality is by the mean value theorem, with β∗ lying between β and

β̂CK. Thus,

β − β̂CK =

 ∂2Q∗
h(β)

∂β∂βT

∣∣∣∣∣
β=β∗


−1

∂Q∗
h(β)

∂β
= (Jn + L∗

n)−1Kn, (B.3)
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where Kn is given by (A.7), Jn is given by (A.9), and the last expression results from

a first-order Taylor approximation to be elaborated next, from which the expression

of L∗
n becomes clear.

In (B.3), L∗
n is the residual term when one uses Jn to approximate

(∂2/∂β∂βT)Q∗
h(β) evaluated at β∗ via a first-order Taylor expansion. To see how

this residual is obtained, it is helpful to define β̃∗ = β + t(β∗ − β), where t ∈ [0, 1],

and to introduce a function mapping t ∈ [0, 1] to a 2 × 2 matrix defined by

G(t) = ∂2Q∗
h(β)

∂β∂βT

∣∣∣∣∣
β=β̃∗

, next recall (A.9),

= − 1
nh3

n∑
j=1

−IC(2,0)
j

 1 Wj

Wj W 2
j

+ IS(2,1)
j

0 1

1 2Wj

+ IC(2,2)
j

0 0

0 1



∣∣∣∣∣∣∣∣
β=β̃∗

.

Since β̃∗ = β + t(β∗ − β), G(0) is equal to Jn given in (A.9), and G(1) is equal to

(∂2/∂β∂βT)Q∗
h(β) evaluated at β∗, that is, the quantity inside the curly brackets in

(B.3). It follows that a first-order Taylor approximation of G(1) around t = 0 leads

to

G(1) = G(0) + G′(t∗)(1 − 0) = Jn + G′(t∗),

where G′(t∗) is the derivative of G(t) evaluated at t = t∗, for some t∗ lying between

0 and 1, and G′(t∗) is the residual L∗
n in (B.3). More specifically, one can apply the

chain rule to obtain G′(t) as follows. Firstly, one differentiates G(t) with respect

to β̃∗, which amounts to differentiating IC(2,0)
j , IS(2,1)

j , and IC(2,2)
j with respect to β,

then one evaluates the resultant expressions at β̃∗. Secondly, one differentiates β̃∗

with respect to t, producing the factor β∗ − β. These two steps lead to the following

expression of L∗
n,

L∗
n = − 1

nh3

n∑
j=1

−

 1 Wj

Wj W 2
j

 ∂IC(2,0)
j

∂β
+

0 1

1 2Wj

 ∂IS(2,1)
j

∂β
+

0 0

0 1

 ∂IC(2,2)
j

∂β


∣∣∣∣∣∣∣∣
β=β̃∗

(β∗ − β)T.
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Since ∥β̃∗ − β∥ ≤ ∥β∗ − β∥ ≤ ∥β̂CK − β∥ = op(1), using the results in Lemma C

regarding Ln given by (A.10), one has L∗
n = op(1).

Besides L∗
n = op(1), Lemma C indicates that Jn converges to a finite constant ma-

trix in probability. Hence, by (B.3), to establish the asymptotic normality of β̂CK −β,

it suffices to show the asymptotic normality for Kn. This is proved in the following

two parts, the first part for establishing (B.1), and the second part for showing (B.2).

Part (I): Show (B.1).

When U is ordinary smooth, define K∗
n =

√
nh3+2bKn. We next show that,

{pTCov(K∗
n)p}1/2 pT{K∗

n − E(K∗
n)} d−→ N(0, 1),

for any unit vector p = (p1, p2)T ∈ R2, (B.4)

where “ d−→" refers to convergence in distribution. Once (B.4) is proved, we conclude

the asymptotic normality of K∗
n by the Cramér-Wold Theorem (Cramer and Wold,

1936), and thus the asymptotic normality of Kn.

By (A.7), pTK∗
n = ∑n

j=1 ξj, where

ξj = − hb

√
nh

pT

IS(1,0)
j

 1

Wj

+ IC(1,1)
j

0

1


 .

Define mj = E(ξj|Xj) and S2
n = ∑n

j=1 Var(ξj|Xj). We next use the Lyapunov Central

Limit Theorem to show the asymptotic normality of pTK∗
n. This requires proving the

Lyapunov’s conditions (Billingsley, 2008), which states that

lim
n→∞

1
S2+δ

n

n∑
j=1

E|ξj − mj|2+δ = 0, for some δ > 0. (B.5)

In particular, we show that (B.5) is satisfied for δ = 1.
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First, because ξ1, . . . , ξn are independent,

S2
n = Var

 n∑
j=1

ξj

∣∣∣∣∣∣X


= pTVar(K∗
n|X)p, next use (A.7),

= h2b−1pTVar

IS(1,0)
j

 1

Wj

+ IC(1,1)
j

0

1


∣∣∣∣∣∣∣∣Xj

p, (B.6)

The variance in (B.6) involve the following expectations,

E
{(

IS(1,0)
j

)2
∣∣∣∣Xj

}
, E

{(
IS(1,0)

j

)2
Wj

∣∣∣∣Xj

}
, E

{(
IS(1,0)

j

)2
W 2

j

∣∣∣∣Xj

}
,

E
(

IS(1,0)
j IC(1,1)

j

∣∣∣Xj

)
, E

(
IS(1,0)

j IC(1,1)
j Wj

∣∣∣Xj

)
, E

{(
IC(1,1)

j

)2
∣∣∣∣Xj

}
.

(B.7)

Derivations of the limits of h2b−1 times these expectations as n → ∞ and h → 0

make use of intermediate results revealed in the proof for Lemma C in Appendix

C, and Lemma 2.1 in Fan (1991a). In what follows, we elaborate the derivation

of limn→∞ h2b−1E{(IS(1,0)
j )2U ℓ|Xj}, for ℓ = 0, 1, 2, which relates to the first three

expectations in (B.7).

By the arguments following (F.20) in Appendix C,

hb{1/(2π)}t sin(vt)ϕK(t)/ϕU(β1t/h) is integrable, and thus, by the Lebesgue domi-

nated convergence theorem,

lim
n→∞

hb 1
2π

∫
t sin(vt) ϕK(t)

ϕU(β1t/h)dt

= 1
2π

∫
lim

n→∞
hbt sin(vt)ϕK(t) |β1t/h|b

|β1t/h|bϕU(β1t/h)I(|β1t| > Mh)dt,

= |β1|b

2πc0

∫
t sin(vt)|t|bϕK(t)dt, (B.8)
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where M is a positive constant c0 = lim|t|→∞ |t|bϕU(t). It follows that

lim
n→∞

h2b−1E
{(

IS(1,0)
j

)2
U ℓ

∣∣∣∣Xj

}

= lim
n→∞

h2b
∫

fU(u)uℓ
∫ {

1
2π

∫
t sin(vt) ϕK(t)

ϕU(β1t/h)dt

}2

g(β1u − hv|Xj)dvdu

=
∫

fU(u)uℓ lim
n→∞

∫ {
hb 1

2π

∫
t sin(vt) ϕK(t)

ϕU(β1t/h)dt

}2

g(β1u − hv|Xj)dvdu

=
∫

fU(u)uℓg(β1u|Xj)
β2b

1
c2

0

∫ { 1
2π

∫
t sin(vt)|t|bϕK(t)dt

}2
dvdu (B.9)

=β2b
1

c2
0

E{U ℓg(β1U |Xj)}
1

2π

∫
t2+2bϕ2

K(t)dt, (B.10)

where (B.9) is obtained by using Lemma 2.1 in Fan (1991a), along with the result in

(B.8), and the expectation in (B.10) is with respect to the distribution of U . Following

similar lines of arguments leading to (B.8) and (B.9), one can show that, relating to

the last three expectations in (B.7),

lim
n→∞

h2b−2E
(

IS(1,0)
j IC(1,1)

j U ℓ
j

∣∣∣Xj

)
=

|β1|bc1

c3
0

E{U ℓg(β1U |Xj)}
1

2π

∫
t1+2bϕ2

K(t)dt, for ℓ = 0, 1,

lim
n→∞

h2b−3E
{(

IC(1,0)
j

)2
∣∣∣∣Xj

}
= β2b−2

1 c2
1

c4
0

E{g(β1U |Xj)}
1

2π

∫
t2bϕ2

K(t)dt,

(B.11)

where c1 = lim|t|→∞ |t|b+1|ϕ(1)
U (t)|.

Using (B.10) and (B.11), along with relevant expectations derived in Appendix
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C, one has

lim
n→∞

Var(K∗
n|X)

= lim
n→∞

n−1
n∑

j=1
h2b−1 (B.12)

 Var
(

IS(1,0)
j

∣∣∣Xj

)
Cov

(
IS(1,0)

j , IS(1,0)
j Wj + IC(1,1)

j

∣∣∣Xj

)
Cov

(
IS(1,0)

j , IS(1,0)
j Wj + IC(1,1)

j

∣∣∣Xj

)
Var

(
IS(1,0)

j Wj + IC(1,1)
j

∣∣∣Xj

)

(B.13)

= lim
n→∞

n−1
n∑

j=1

β2b
1

c2
0

1
2π

∫
t2+2bϕ2

K(t)dt×
 E{g(β1U |Xj)} XjE{g(β1U |Xj)} + E{Ug(β1U |Xj)}

XjE{g(β1U |Xj)} + E{Ug(β1U |Xj)} T4

 ,

(B.14)

where T4 = X2
j E{g(β1U |Xj)} + 2XjE{Ug(β1U |Xj)} + E{U2g(β1U |Xj)}, which is

well defined under conditions (O4) and (N1). Hence, limn→∞ S2
n = pTKLp, where KL

is the expectation (with respect to X) of (B.14).

Second, following similar derivations of expectations elaborated in Appendix C,

one can show that multiplying the following three expectations by n−1/2h3(b−1/2) all

lead to quantities that tend to zero as n → ∞,

E
(∣∣∣IS(1,0)

j

∣∣∣3∣∣∣∣Xj

)
, E

(∣∣∣IS(1,0)
j Wj

∣∣∣3∣∣∣∣Xj

)
, E

(∣∣∣IC(1,1)
j

∣∣∣3∣∣∣∣Xj

)
. (B.15)

These imply that, as n → ∞,

nE(|ξj|3|Xj) = n−1/2h3(b−1/2)E
(∣∣∣p1IS(1,0)

j + p2IS(1,0)
j Wj + p2IC(1,1)

j

∣∣∣3∣∣∣∣Xj

)
→ 0.

It follows that limn→∞
∑n

j=1 |ξj − mj|3 = 0. This and the previous conclusion re-

garding S2
n together lead to the Lyapunov’s conditions in (B.5), which is a sufficient

condition for, taking into account the asymptotic mean of Kn according to Lemma

C,
√

nh3+2b
(
Kn − µ2Qh2/2

)
d−→ N(0, KL).
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Finally, by the Slutsky’s Theorem, we have (B.1).

Part (II): Show (B.2).

When U is super smooth, define K∗
n = exp{−2|β1|b/(d2h

b)}
√

nh3−2 min(b2,b3)Kn.

Now we have pTK∗
n = ∑n

j=1 ξj with

ξj = − exp
(

−2|β1|b

d2hb

)
1√

nh1+min(b2,b3)
pT

IS(1,0)
j

 1

Wj

+ IC(1,1)
j

0

1


 .

The remaining task is to show (B.5) for the so-defined ξj. This leads one to look into

the expectations in (B.7) and those in (B.15). In particular, relating to (B.15), one can

show that ∑n
j=1 |ξj −mj|3 converges to a quantity of order n−1/2 exp{−3|β1|b/(d2h

b)}.

As for the expectations in (B.7), the key lies in establishing lower bounds for |IS(1,0)
j |,

|IC(1,1)
j |, and |IS(1,0)

j IC(1,1)
j |. We adopt the strategies used in the proof for Lemma

2.3 in Fan (1991a) and the proof for Lemma 3.1 in Fan and Masry (1992), including

splitting the region of an integration, shrinking or magnifying parts of an integrand,

to find lower bounds of these quantities. Take |IS(1,0)
j | as an example, it suffices to

zoom in on the following integral, as h → 0,

1
2π

∫
|t|∈(1−hb,1)

t sin(vt) ϕK(t)
ϕU(β1t/h)dt

= 1
π

sin(v){1 + o(1)}
∫ 1

1−hb
t

ϕK(t)
ϕU(β1t/h)dt

≥C sin(v)hb1
∫ 1

1−hb
t1−b1(1 − t)q exp

(
|β1|btb

d2hb

)
dt,

≥C sin(v)hb1(1 − hb)1−b1 exp
{

|β1|b(1 − hb)b

d2hb

}∫ 1

1−hb
(1 − t)qdt (B.16)

≥C sin(v)hb1+(q+1)b exp
{

|β1|b

d2hb

}
, (B.17)

where C denotes a generic constant in the above derivations; (B.16) is obtained

because, if b1 ≤ 1, t1−b1 exp{|β1|btb/(d2h
b)} is increasing for all t > 0, and, if b1 > 1,

it is increasing in t ∈ (1 − hb, 1) for an h close to zero; (B.17) is obtained due

to the fact that (1 − hb)b ≥ 1 − bhb/2 for a small enough hb. Under (N3) and
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(N4), (2π)−1 ∫
|t|≤1−hb t sin(vt)ϕK(t)/ϕU(β1t/h)dt is dominated by the above integral

as h → 0. This suggests that |IS(1,0)
j |2 is bounded from below by a quantity of order

h2b1+2(q+1)b exp{2|β1|b/(d2h
b)}. Similarly, assuming 0 ≤ 2b1 − b

(1)
0 ≤ 1, under (N3),

(N4), (S1), and the definition of super smoothness, one can show that |IC(1,1)
j |2 is

bounded from below by a quantity of order

h4b1−2b
(1)
0 +2(q+1)b exp{2|β1|b/(d2h

b)}, and |IS(1,0)
j IC(1,1)

j | is bounded from below by a

quantity of order

hb1+2b1−b
(1)
0 +2(q+1)b exp{2|β1|b/(d2h

b)}. It follows that S3
n is bounded from below by a

quantity of order h3{(q+1)b−0.5−min(b2,b3)+min(b1,2b1−b
(1)
0 )} exp{−3|β1|b/(d2h

b)} as n → ∞.

This, along with the aforementioned result regarding ∑n
j=1 |ξj − mj|3, implies (B.5).

Unlike in Part (I) above, here we are unable to find the limits in (B.13). We state

under Theorem 2-(ii) the asymptotic normality result for the case with super smooth

measurement error in the form of (B.2), followed by the rate of Var(β̂CK). Deriving

limits similar to those in (B.13) in the presence of super smooth measurement er-

ror has been a long-standing hurdle in establishing the central limit theorem of the

classical form, such as the form in (B.1), for estimators like ours that involved decon-

voluting kernels. Existing works where authors faced similar hurdles include Zhang

(1990), Fan (1991a), Fan and Masry (1992), Masry (1993), Delaigle et al. (2009)

and Delaigle and Zhou (2015), among many others, in which asymptotic normality

results are presented in ways without involving explicit dominating terms of asymp-

totic variance of relevant estimators. Van Es and Uh (2005) derived the dominating

terms in the asymptotic variance of deconvoluting kernel density estimators when the

order of super smoothness b is larger than one. One may be able to follow a similar

strategy to obtain the dominating term of Var(β̂CK) in the presence of super smooth

measurement error of order b > 1, which we do not pursue in the current work.
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Appendix C

Lemmas referenced in Appendices A and B

Lemma C. Assume E(U4) < ∞, and assume conditions stated in Lemmas C.1, C.2,

and C.3 hold. Define µ2 =
∫

t2K(t)dt and X = (X1, . . . , Xn). For Kn, Jn and Ln

given by (A.7), (A.9), and (A.10), respectively, we have

E(Kn|X) = µ2h
2

2n

n∑
j=1

g(3)(0|Xj)X̃j{1 + op(1)}, (C.1)

E(Jn|X) = 1
n

n∑
j=1

g(2)(0|Xj)X̃jX̃
T
j {1 + op(1)}, (C.2)

E(Ln|X) = Op(1). (C.3)

And when U is ordinary smooth of order b, under Conditions O, we have

Var(Kn|X) = Op{1/(nh3+2b)}, (C.4)

Var(Jn|X) = Op{1/(nh5+2b)}, (C.5)

Var(Ln|X) = Op{1/(nh7+2b)}; (C.6)

when U is super smooth of order b, under Conditions S, we have

Var(Kn|X) = Op{exp(2|β1|bh−b/d2)/(nh3−2 min(b2,b3))}, (C.7)

Var(Jn|X) = Op{exp(2|β1|bh−b/d2)/(nh5−2 min(b2,b3,b4))}, (C.8)

Var(Ln|X) = Op{exp(2|β1|bh−b/d2)/(nh7−2 min(b2,b3,b4,b5))}, (C.9)

where b2 = b0I(b0 < 0.5), b3 = (2b0 − b
(1)
1 )I(2b0 − b

(1)
1 < 0.5), b4 = min{(2b0 −

b
(2)
1 )I(2b0 − b

(2)
1 < 0.5), (3b0 − 2b

(1)
1 )I(3b0 − 2b

(1)
1 < 0.5)}, and b5 = min{(2b0 −

b
(3)
1 )I(2b0−b

(3)
1 < 0.5), (3b0−b

(1)
1 −b

(2)
1 )I(3b0−b

(1)
1 −b

(2)
1 < 0.5), (4b0−b

(1)
1 −2b

(2)
1 )I(4b0−

b
(1)
1 − 2b

(2)
1 < 0.5)}.
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Proof. The proof consists of six parts to establish (C.1)–(C.9). We first define a

series of integrals as follows, with integrands involving tℓ1 and the ℓ2-th derivative of

τ(s) = −1/ϕU(s) evaluated it s = β1t/h,

Fℓ1,ℓ2(s) = 1
2π

∫
eisttℓ1ϕK(t)τ (ℓ2)(β1t/h)dt, (C.10)

for nonnegative integers ℓ1 and ℓ2.

Part (I): Show (C.1).

By (A.7),

E(Kn|X) = − 1
nh2

n∑
j=1

 E
(

IS(1,0)
j

∣∣∣Xj

)
E
(

IS(1,0)
j Wj + IC(1,1)

j

∣∣∣Xj

)
 .

Recall that, given X = x, the mode residual, ϵ = Y − βTX̃, follows a distribution

specified by the pdf g(ϵ|x), and fY |X(y|x) = g(y − βTx̃|x). It follows that, for the

first element in the 2 × 1 summand above, we have

E
(

IS(1,0)
j

∣∣∣Xj

)
=E

{
1

2π

∫
t sin

(
Yj − βTW̃j

h
t

)
ϕK(t)τ(β1t/h)dt

∣∣∣∣∣Xj

}

= 1
2π

∫
g(ϵ|Xj)

∫
tϕK(t)τ(β1t/h)

∫
sin

(
ϵ − β1u

h
t

)
fU(u)du dt dϵ

= 1
2π

∫
g(ϵ|Xj)

∫
tϕK(t)τ(β1t/h)ϕU(−β1t/h) sin(ϵt/h)dt dϵ, by Lemma C.1,

= − 1
2π

∫
g(ϵ|Xj)

∫
tϕK(t) sin(ϵt/h)dt dϵ,

= − h · 1
2π

∫
g(sh|Xj)

∫
tϕK(t) sin(st)dt ds

= − h · 1
2π

∫ {
g(0|Xj) + 0.5g(2)(0|Xj)s2h2

+6−1g(3)(0|Xj)s3h3 + 24−1g(4)(s∗|Xj)s4h4
}

·∫
tϕK(t) sin(st)dt ds, for some s∗ lying between 0 and sh,

= − 0.5µ2h
4g(3)(0|Xj) + Op(h5), by Lemma C.2.

The second element in the 2 × 1 summand of E(Kn|X) above is

E
(

IS(1,0)
j Wj + IC(1,1)

j

∣∣∣Xj

)
= XjE

(
IS(1,0)

j

∣∣∣Xj

)
+ E

(
IS(1,0)

j Uj

∣∣∣Xj

)
+ E

(
IC(1,1)

j

∣∣∣Xj

)
,
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where the first expectation is derived above, and the latter two expectations sum to

zero, as we show next. Following a similar elaboration of E(IS(1,0)
j |Xj) above, one has

E
(

IS(1,0)
j Uj

∣∣∣Xj

)
+ E

(
IC(1,1)

j

∣∣∣Xj

)
= 1

2π

∫
g(ϵ|Xj)

∫
tϕK(t)τ(β1t/h)

∫
u sin

(
ϵ − β1u

h
t

)
fU(u)du dt dϵ+

1
2π

∫
g(ϵ|Xj)

∫
tϕK(t)τ (1)(β1t/h)

∫
cos

(
ϵ − β1u

h
t

)
fU(u)du dt dϵ

= 1
2π

∫
g(ϵ|Xj)

∫
tϕK(t)τ(β1t/h) · (−1) · ϕ

(1)
U (−β1t/h) cos(ϵt/h)dt dϵ+

1
2π

∫
g(ϵ|Xj)

∫
tϕK(t)τ (1)(β1t/h)ϕU(−β1t/h) cos(ϵt/h)dt dϵ, by Lemma C.1,

= 1
2π

∫
g(ϵ|Xj)

∫
tϕK(t)

{
τ(β1t/h)ϕ(1)

U (β1t/h) + τ (1)(β1t/h)

ϕU(β1t/h)} cos(ϵt/h)dt dϵ,

where, by Lemma C.3, the expression within the curly brackets is equal to zero.

Hence, the summand of E(Kn|X) is equal to −0.5µ2h
4g(3)(0|Xj)X̃j + Op(h5). This

proves (C.1).

Part (II): Show (C.4) and (C.7).

By (A.7), the order of Var(Kn|X) is determined by

1
nh4 E


(
IS(1,0)

j

)2

 1 Wj

Wj W 2
j

+ IS(1,0)
j IC(1,1)

j

0 1

1 2Wj

+
(
IC(1,1)

j

)2

0 0

0 1


∣∣∣∣∣∣∣∣Xj

 .

(C.11)

We next derive the six expectations involved in (C.11), also listed in (B.7) for proving

Theorem 2. Among these six expectations,

E
{(

IS(1,0)
j

)2
Wj

∣∣∣∣Xj

}
= E

{(
IS(1,0)

j

)2
Uj

∣∣∣∣Xj

}
+ E

{(
IS(1,0)

j

)2
∣∣∣∣Xj

}
Xj,

E
{(

IS(1,0)
j

)2
W 2

j

∣∣∣∣Xj

}
= E

{(
IS(1,0)

j

)2
U2

j

∣∣∣∣Xj

}
+ 2E

{(
IS(1,0)

j

)2
Uj

∣∣∣∣Xj

}
Xj

+ E
{(

IS(1,0)
j

)2
∣∣∣∣Xj

}
X2

j .

It can be shown that, provided that the first two moments of U exist, E{(IS(1,0)
j )2Uj|Xj}

and E{(IS(1,0)
j )2U2

j |Xj} have the same rate as E{(IS(1,0)
j )2|Xj}. Hence,
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E{(IS(1,0)
j )2Wj|Xj} and E{(IS(1,0)

j )2W 2
j |Xj} have the same rate as E{(IS(1,0)

j )2|Xj}.

Similarly, E(IS(1,0)
j IC(1,1)

j Wj|Xj) is of the same order as E(IS(1,0)
j IC(1,1)

j |Xj), which,

according to the Cauchy-Schwarz inequality, is bounded from above by√
E{(IS(1,0)

j )2|Xj}E{(IC(1,0)
j )2|Xj}. Hence, we only need to focus on E{(IS(1,0)

j )2|Xj}

and E{(IC(1,0)
j )2|Xj} next.

First, by (A.4),

E
{(

IS(1,0)
j

)2
∣∣∣∣Xj = x

}

= E

{ 1
2π

∫
t sin

(
Yj − βT

0 W̃j

h
t

)
ϕK(t)

ϕU(β1t/h)dt

}2∣∣∣∣∣∣Xj = x


=
∫

fU(u)
∫ {

1
2π

∫
t sin

(
ϵ − β1u

h
t

)
ϕK(t)

ϕU(β1t/h)dt

}2

g(ϵ|x)dϵdu

≤ Bgh
∫

fU(u)
∫

| − F1,0(s)|2dsdu

= Bgh
∫

|F1,0(s)|2ds, (C.12)

where Bg = supx supϵ g(ϵ|x). When U is ordinary smooth of order b, by Definition 1

in the Chapter 2, there exists a constant M > 0 such that

∫
|F1,0(s)|2ds = 1

2π

∫
t2 ϕ2

K(t)
ϕ2

U(β1t/h)dt, by the Parseval’s Theorem, (C.13)

= 1
2π

∫
|β1t|≤Mh

t2 ϕ2
K(t)

ϕ2
U(β1t/h)dt + 1

2π

∫
|β1t|>Mh

t2 ϕ2
K(t)

ϕ2
U(β1t/h)dt

≤ 1
2π

{
inf

|β1t|≤Mh
|ϕU(β1t/h)|

}−2 ∫
|β1t|≤Mh

t2ϕ2
K(t)dt+ (C.14)

1
2π

∫
|β1t|>Mh

t2 ϕ2
K(t)

(c2/4)|β1t/h|−2b
dt

= O(h−2b), under Condition (O4).

Hence, for ordinary smooth U , (C.12) suggests E{(IS(1,0)
j )2|Xj} = O(h1−2b). When

U is super smooth of order b, by Definition 2 in the Chapter 2, following (F.20), one
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has,

∫
|F1,0(s)|2ds

≤ 1
2π

{
inf

|β1t|≤Mh
|ϕU(β1t/h)|

}−2 ∫
|β1t|≤Mh

t2ϕ2
K(t)dt

+ 1
2π

∫
Mh<|β1t|≤|β1|

t2 ϕ2
K(t)

d2
0|β1t/h|2b0 exp(−2|β1t/h|b/d2)

dt

≤C1

∫
|β1t|≤Mh

t2ϕ2
K(t)dt + C2h

2b0 exp(2|β1|bh−b/d2)
∫

Mh<|β1t|≤|β1|
t2 ϕ2

K(t)
|t|2b0

dt

=O{h2b2 exp(2|β1|bh−b/d2)},

where b2 = b0I(b0 < 0.5). Hence, for super smooth U ,

E{(IS(1,0)
j )2|Xj} = O{h1+2b2 exp(2|β1|bh−b/d2)}.

Similarly,

E
{(

IC(1,1)
j

)2
∣∣∣∣Xj = x

}
≤ Bgh

∫
fU(u)

∫
|F1,1(s)|2dsdu = Bgh

∫
|F1,1(s)|2ds.

(C.15)

When U is ordinary smooth of order b, using the definition of τ (1)(s),

∫
|F1,1(s)|2ds

= 1
2π

∫
t2ϕ2

K(t)

ϕ
(1)
U (β1t/h)

ϕ2
U(β1t/h)


2

dt, next use Definition 1 and Condition (O1),

(C.16)

≤ 1
2π

sup
|β1t|≤Mh

|τ (1)(β1t/h)|2
∫

|β1t|≤Mh
t2ϕ2

K(t)dt

+ 1
2π

∫
|β1t|>Mh

t2ϕ2
K(t)

(
2cb|β1t/h|−b−1

c2|β1t/h|−2b/4

)2

dt

=O(h2−2b), under Condition (O4).

Hence, for ordinary smooth U , by (C.15), E{(IC(1,1)
j )2|Xj = x} = O(h3−2b). When U
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is super smooth of order b, following (C.16) and using Defition 2 and Condition (S1),∫
|F1,1(s)|2ds ≤ 1

2π
sup

|β1t|≤Mh

|τ (1)(β1t/h)|2
∫

|β1t|≤Mh
t2ϕ2

K(t)dt

+ 1
2π

∫
Mh<|β1t|≤|β1|

t2ϕ2
K(t)

d
(1)
1 |β1t/h|b

(1)
1 exp(−|β1t/h|b/d2)

d2
0|β1t/h|2b0 exp(−2|β1t/h|b/d2)


2

dt

= O
{
h2b3 exp(2|β1|bh−b/d2)

}
,

where b3 = (2b0 −b
(1)
1 )I(2b0 −b

(1)
1 < 0.5). Hence, for super smooth U , (C.15) indicates

E{(IC(1,1)
j )2|Xj = x} = O{h2b3+1 exp(2|β1|bh−b/d2)}.

Having the rates of the expectations in (B.7) derived above under the two types of

measurement error distributions, we are now ready to return to (C.11) and conclude

the rate of Var(Kn|X). In particular, (C.11) implies (C.4) if U is ordinary smooth,

and it implies (C.7) if U is super smooth.

Up to this point, we have established the rates of E(Kn|X) and Var(Kn|X). One

will see later that the theme used above to establish these rates is repeatedly used

to derive the rates of E(Jn|X), Var(Jn|X), E(Ln|X), and Var(Ln|X). Before mov-

ing forward to proving the next result, we shall summarize two patterns learnt from

Parts (I) and (II) that can be helpful for later parts of the proof. The first pattern

pertains to deriving the rate of the mean of Kn, or Jn, or Ln. As seen in Part (I), the

order of such mean mostly depends on E(IC(ℓ1,ℓ2)
j W ℓ3

j |Xj) and E(IS(ℓ1,ℓ2)
j W ℓ3

j |Xj), for

some nonnegative integers ℓ1, ℓ2 and ℓ3. These expectations are derived in the same

way for ordinary smooth U and for super smooth U . The second pattern relates to

deriving the rate of the variance of Kn, or Jn, or Ln. Such rate mainly depends on

E{(IC(ℓ1,ℓ2)
j )2W ℓ3

j |Xj) and E{(IS(ℓ1,ℓ2)
j )2W ℓ3

j |Xj), for some nonnegative integers ℓ1, ℓ2

and ℓ3. Moreover, raising the power ℓ3 from zero does not affect the rate, hence

one may focus on E{(IC(ℓ1,ℓ2)
j )2|Xj) and E{(IS(ℓ1,ℓ2)

j )2|Xj). As seen in Part (II), each

of these expectations is bounded from above by Bgh
∫

|Fℓ1,ℓ2(s)|2ds. Discussions of

the rate of
∫

|Fℓ1,ℓ2(s)|2ds need to be carried out separately for ordinary smooth U

and super smooth U . This rate mostly relies on ℓ2, and the rate is derived under
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the assumption that
∫

t2ℓ1ϕ2
K(t)dt < ∞, besides other assumptions. If U is ordinary

smooth, for ℓ2 < ℓ′
2,
∫

|Fℓ′
1,ℓ′

2
(s)|2ds/

∫
|Fℓ1,ℓ2(s)|2ds = o(1), where ℓ1 and ℓ′

1 can be

the same or different. If U is super smooth, the comparison between the rate of∫
|Fℓ1,ℓ2(s)|2ds and that of

∫
|Fℓ′

1,ℓ′
2
(s)|2ds is less clear-cut, and requires more careful

inspection.

Part (III): Show (C.2).

By (A.9), one has

E(Jn|X)

= − 1
nh3

n∑
j=1

E

−IC(2,0)
j

 1 Wj

Wj W 2
j


∣∣∣∣∣∣∣∣Xj

+ E

IS(2,1)
j

0 1

1 2Wj


∣∣∣∣∣∣∣∣Xj

 (C.17)

+E

IC(2,2)
j

0 0

0 1


∣∣∣∣∣∣∣∣Xj




= − 1
nh3

n∑
j=1

ηj,1 ηj,2

ηj,2 ηj,3

 , (C.18)

where
ηj,1 = −E

(
IC(2,0)

j

∣∣∣Xj

)
,

ηj,2 = −E
(

IC(2,0)
j

∣∣∣Xj

)
Xj − E

(
IC(2,0)

j Uj

∣∣∣Xj

)
+ E

(
IS(2,1)

j

∣∣∣Xj

)
,

ηj,3 = −E
(

IC(2,0)
j W 2

j

∣∣∣Xj

)
+ 2E

(
IS(2,1)

j Wj

∣∣∣Xj

)
+ E

(
IC(2,2)

j

∣∣∣Xj

)
.

(C.19)

To derive (C.18), in what follows, we first show that ηj,2 = ηj,1Xj and ηj,3 = ηj,1X
2
j .

Then we focus on deriving ηj,1.

By (C.19), ηj,2 contains two extra expectations besides the one defined as ηj,1.
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These two expectations together give

− E
(

IC(2,0)
j Uj

∣∣∣Xj

)
+ E

(
IS(2,1)

j

∣∣∣Xj

)
= − 1

2π

∫
g(ϵ|Xj)

∫
t2ϕK(t)τ(β1t/h)

∫
u cos

(
ϵ − β1u

h
t

)
fU(u)du dt dϵ+

1
2π

∫
g(ϵ|Xj)

∫
t2ϕK(t)τ (1)(β1t/h)

∫
sin

(
ϵ − β1u

h
t

)
fU(u)du dt dϵ

= − 1
2π

∫
g(ϵ|Xj)

∫
t2ϕK(t)τ(β1t/h)ϕ(1)

U (−β1t/h) sin(ϵt/h)dt dϵ+
1

2π

∫
g(ϵ|Xj)

∫
t2ϕK(t)τ (1)(β1t/h)ϕU(−β1t/h) sin(ϵt/h)dt dϵ, by Lemma C.1,

= 1
2π

∫
g(ϵ|Xj)

∫
t2ϕK(t)

{
τ(β1t/h)ϕ(1)

U (β1t/h)

+τ (1)(β1t/h)ϕU(β1t/h)
}

sin(ϵt/h)dt dϵ,

where, by Lemma C.3, the part of the integrand insides the curly brackets is equal

to zero. Therefore, ηj,2 = ηj,1Xj.

Elaborating ηj,3 in (C.19) yields

ηj,3 = −E
{

IC(2,0)
j U2

j

∣∣∣Xj

}
+ 2E

{
IS(2,1)

j Uj

∣∣∣Xj

}
+ E

{
IC(2,2)

j

∣∣∣Xj

}
+

2
{
−E

(
IC(2,0)

j Uj

∣∣∣Xj

)
+ E

(
IS(2,1)

j

∣∣∣Xj

)}
+ ηj,1X

2
j

= −E
{

IC(2,0)
j U2

j

∣∣∣Xj

}
+ 2E

{
IS(2,1)

j Uj

∣∣∣Xj

}
+ E

{
IC(2,2)

j

∣∣∣Xj

}
+ ηj,1X

2
j ,

where, to reach the last step, we drop the part in the first step that reduces to zero

according to the preceding derived results in regard to ηj,2. As for the remaining
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three expectations in front of ηj,1X
2
j above, we have

− E
{

IC(2,0)
j U2

j

∣∣∣Xj

}
+ 2E

{
IS(2,1)

j Uj

∣∣∣Xj

}
+ E

{
IC(2,2)

j

∣∣∣Xj

}
= − 1

2π

∫
g(ϵ|Xj)

∫
t2ϕK(t)τ(β1t/h)

∫
u2 cos

(
ϵ − β1u

h
t

)
fU(u)du dt dϵ+

2 · 1
2π

∫
g(ϵ|Xj)

∫
t2ϕK(t)τ (1)(β1t/h)

∫
u sin

(
ϵ − β1u

h
t

)
fU(u)du dt dϵ+

1
2π

∫
g(ϵ|Xj)

∫
t2ϕK(t)τ (2)(β1t/h)

∫
cos

(
ϵ − β1u

h
t

)
fU(u)du dt dϵ

= 1
2π

∫
g(ϵ|Xj)

∫
t2ϕK(t)τ(β1t/h)ϕ(2)

U (−β1t/h) cos(ϵt/h)dt dϵ+

2 · 1
2π

∫
g(ϵ|Xj)

∫
t2ϕK(t)τ (1)(β1t/h) · (−1) · ϕ

(1)
U (−β1t/h) cos(ϵt/h)dt dϵ+

1
2π

∫
g(ϵ|Xj)

∫
t2ϕK(t)τ (2)(β1t/h)ϕU(−β1t/h) cos(ϵt/h)dt dϵ, by Lemma C.1,

= 1
2π

∫
g(ϵ|Xj)

∫
t2ϕK(t)

{
τ(β1t/h)ϕ(2)

U (β1t/h) + 2τ (1)(β1t/h)ϕ(1)
U (β1t/h)+

τ (2)(β1t/h)ϕU(β1t/h)
}

cos(ϵt/h)dt dϵ,

in the last step of which we use the assumption that ϕU(·) is even, thus ϕ
(1)
U (·) is odd

and ϕ
(2)
U (·) is even. By Lemma C.3, the part inside the curly brackets in the last step

reduces to zero. Hence, ηj,3 = ηj,1X
2
j .

Now that (C.19) only hinges on ηj,1, we shall derive this quantity next,

ηj,1 = −E
(

IC(2,0)
j

∣∣∣Xj

)
= − 1

2π

∫
g(ϵ|Xj)

∫
t2ϕK(t)τ(β1t/h)

∫
cos

(
ϵ − β1u

h
t

)
fU(u)du dt dϵ

= − 1
2π

∫
g(ϵ|Xj)

∫
t2ϕK(t)τ(β1t/h)ϕU(−β1t/h) cos(ϵt/h)dt dϵ, by Lemma C.1,

= 1
2π

∫
g(ϵ|Xj)

∫
t2ϕK(t) cos(ϵt/h)dt dϵ, since τ(s) = −1/ϕU(s),

= h · 1
2π

∫
g(hs|Xj)

∫
t2ϕK(t) cos(st)dt ds

= h · 1
2π

∫ {
g(0|Xj) + g(2)(0|Xj)h2s2/2 + Op(h3)

} ∫
t2ϕK(t) cos(st)dt ds

= h · g(0|Xj) · 1
2π

∫ ∫
t2ϕK(t) cos(st)dt ds+

h3

2 g(2)(0|Xj) · 1
2π

∫ ∫
t2ϕK(t) cos(st)dt s2 ds + Op(h4)

= −h3g(2)(0|Xj) + Op(h4), by Lemma C.2.
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To this end, one can conclude that
ηj,1 = −h3g(2)(0|Xj){1 + op(1)},

ηj,2 = −h3g(2)(0|Xj)Xj{1 + op(1)},

ηj,3 = −h3g(2)(0|Xj)X2
j {1 + op(1)}.

(C.20)

Using (C.20) in (C.18) leads to (C.2).

Part (IV): Show (C.5) and (C.8).

By (A.9), the order of Var(Jn) is determined by the rates of E{(IC(2,0)
j )2W k

j |Xj}

for k = 0, 1, 2, 3, 4, the rates of E{(IS(2,1)
j )2W k

j |Xj} for k = 0, 1, 2, and that of

E{(IC(2,2)
j )2|Xj}. It can be shown that, if E(U4) < ∞, E{(IC(2,0)

j )2W k
j |Xj}, for

k = 1, 2, 3, 4, have the same rate as that of E{(IC(2,0)
j )2|Xj}, and E{(IS(2,1)

j )2W k
j |Xj},

for k = 1, 2, have the same rate as that of E{(IS(2,1)
j )2|Xj}. In what follows, we focus

on deriving the rates of E{(IC(2,0)
j )2|Xj}, E{(IS(2,1)

j )2|Xj}, and E{(IC(2,2)
j )2|Xj}.

We first find an upper bound for each of these three expectations as follows,

E
{(

IC(2,0)
j

)2
∣∣∣∣Xj

}

=
∫

fU(u)
∫ {

1
2π

∫
t2 cos

(
ϵ − β1u

h
t

)
ϕK(t)τ(β1h/t)dt

}2

g(ϵ|Xj)dϵ du

= h
∫

fU(u)
∫

| − F2,0(s)|2g(β1u + sh|Xj)ds du

≤ Bgh
∫

|F2,0(s)|2ds.

Similarly,

E
{(

IS(2,1)
j

)2
∣∣∣∣Xj

}
≤ Bgh

∫
|F2,1(s)|2ds,

E
{(

IC(2,2)
j

)2
∣∣∣∣Xj

}
≤ Bgh

∫
|F2,2(s)|2ds.

When U is ordinary smooth, recalling the pattern stated at the end of Part

(II),
∫

|F2,0(s)|2ds dominates
∫

|F2,1(s)|2ds and
∫

|F2,2(s)|2ds, and
∫

|F2,0(s)|2ds is

of the same order as
∫

|F1,0(s)|2ds, which we looked into in Part (II). Using the
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results regarding
∫

|F1,0(s)|2ds, we have
∫

|F2,0(s)|2ds = O(h−2b) if U is ordinary

smooth, and thus E{(IC(2,0)
j )2|Xj} = O(h1−2b), which dominates E{(IS(2,1)

j )2|Xj},

and E{(IC(2,2)
j )2|Xj}. These rates lead to (C.5).

If U is super smooth, under Conditions S, similar to the proof in Part (II), one

can show that E{(IC(2,0)
j )2|Xj} = O{h1+2b2 exp(2|β1|bh−b/d2)}, E{(IS(2,1)

j )2|Xj} =

O{h1+2b3 exp(2|β1|bh−b/d2)}, and E{(IC(2,2)
j )2|Xj} = O{h1+2b4 exp(2|β1|bh−b/d2)},

where b2 = b0I(b0 < 0.5), b3 = (2b0 − b
(1)
1 )I(2b0 − b

(1)
1 < 0.5), and b4 = min{(2b0 −

b
(2)
1 )I(2b0 − b

(2)
1 < 0.5), (3b0 − 2b

(1)
1 )I(3b0 − 2b

(1)
1 < 0.5)}. Using these rates one can

establish (C.8).

Part (V): Show (C.3).

Because ∥β∗ − β∥ ≤ crn, under conditions that guarantee boundedness of IS(4,ℓ2)
j

and IC(4,ℓ2)
j , for ℓ2 = 0, 1, 2, 3, 4, Ln evaluated at β∗ and Ln evaluated at β are of the

same order. Hence, we focus on studying Ln evaluated at β in the sequel.

Given Xj, the first entry in the 2 × 1 vector in (A.10) has mean given by

(1 + X2
j )E

(
IS(3,0)

j

∣∣∣Xj

)
+ E

(
U2

j IS(3,0)
j

∣∣∣Xj

)
+ 2XjE

(
UjIS(3,0)

j

∣∣∣Xj

)
+

2XjE
(

IC(3,1)
j

∣∣∣Xj

)
+ 2E

(
UjIC(3,1)

j

∣∣∣Xj

)
− E

(
IS(3,2)

j

∣∣∣Xj

)
=(1 + X2

j )E
(

IS(3,0)
j

∣∣∣Xj

)
+ 2Xj

{
E
(

UjIS(3,0)
j

∣∣∣Xj

)
+ E

(
IC(3,1)

j

∣∣∣Xj

)}
+ (C.21)

E
(

U2
j IS(3,0)

j

∣∣∣Xj

)
+ 2E

(
UjIC(3,1)

j

∣∣∣Xj

)
− E

(
IS(3,2)

j

∣∣∣Xj

)
. (C.22)

We next show that the two terms together inside the curly brackets in (C.21) is zero,

so is the three terms together in (C.22).

By the definition of IS(3,0)
j and IC(3,1)

j , the two terms in (C.21) can be elaborated

131



www.manaraa.com

as follows,

E
(

UjIS(3,0)
j

∣∣∣Xj

)
+ E

(
IC(3,1)

j

∣∣∣Xj

)
= 1

2π

∫
g(ϵ|Xj)

∫
t3ϕK(t)τ(β1t/h)

∫
u sin

(
ϵ − β1u

h
t

)
fU(u) du dt dϵ+

1
2π

∫
g(ϵ|Xj)

∫
t3ϕK(t)τ (1)(β1t/h)

∫
cos

(
ϵ − β1u

h
t

)
fU(u) du dt dϵ

= 1
2π

∫
g(ϵ|Xj)

∫
t3ϕK(t)τ(β1t/h)(−1)ϕ(1)

U (−β1t/h) cos(ϵt/h) dt dϵ+
1

2π

∫
g(ϵ|Xj)

∫
t3ϕK(t)τ (1)(β1t/h)ϕU(−β1t/h) cos(ϵt/h) dt dϵ, by Lemma C.1,

= 1
2π

∫
g(ϵ|Xj)

∫
t3ϕK(t)

{
τ(β1t/h)ϕ(1)

U (β1t/h)

+ τ (1)(β1t/h)ϕU(−β1t/h)
}

cos(ϵt/h) dt dϵ

=0,

where the last step is reached because the terms inside the curly brackets in the

second-to-the-last step is equal to zero by Lemma C.3. For (C.22), we have the

following elaboration by the definitions of IS(3,0)
j , IC(3,1)

j , and IS(3,2)
j ,

E
(

U2
j IS(3,0)

j

∣∣∣Xj

)
+ 2E

(
UjIC(3,1)

j

∣∣∣Xj

)
− E

(
IS(3,2)

j

∣∣∣Xj

)
= 1

2π

∫
g(ϵ|Xj)

∫
t3ϕK(t)τ(β1t/h)

∫
u2 sin

(
ϵ − β1u

h
t

)
fU(u) du dt dϵ+

2 · 1
2π

∫
g(ϵ|Xj)

∫
t3ϕK(t)τ (1)(β1t/h)

∫
u cos

(
ϵ − β1u

h
t

)
fU(u) du dt dϵ−

1
2π

∫
g(ϵ|Xj)

∫
t3ϕK(t)τ (2)(β1t/h)

∫
sin

(
ϵ − β1u

h
t

)
fU(u) du dt dϵ

= 1
2π

∫
g(ϵ|Xj)

∫
t3ϕK(t)τ(β1t/h) · (−1) · ϕ

(2)
U (−β1t/h) sin(ϵt/h) dt dϵ+

2 · 1
2π

∫
g(ϵ|Xj)

∫
t3ϕK(t)τ (1)(β1t/h)ϕ(1)

U (−β1t/h) sin(ϵt/h) dt dϵ−
1

2π

∫
g(ϵ|Xj)

∫
t3ϕK(t)τ (2)(β1t/h)ϕU(−β1t/h) sin(ϵt/h) dt dϵ, by Lemma C.1,

= − 1
2π

∫
g(ϵ|Xj)

∫
t3ϕK(t) sin(ϵt/h)·{

τ(β1t/h)ϕ(2)
U (β1t/h) + 2τ (1)(β1t/h)ϕ(1)

U (β1t/h) + τ (2)(β1t/h)ϕU(β1t/h)
}

dt dϵ

=0, by Lemma C.3.
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In conclusion, the mean of the first entry of the 2 × 1 vector in (A.10) given Xj

boils down to (1 + X2
j ) times the following expectation,

E
(

IS(3,0)
j

∣∣∣Xj

)
= 1

2π

∫
g(ϵ|Xj)

∫
t3ϕK(t)τ(β1t/h)

∫
sin

(
ϵ − β1u

h
t

)
fU(u) du dt dϵ

= 1
2π

∫
g(ϵ|Xj)

∫
t3ϕK(t)τ(β1t/h)ϕU(−β1t/h) sin(ϵt/h) dt dϵ, by Lemma C.1,

= − 1
2π

∫
g(ϵ|Xj)

∫
t3ϕK(t) sin(ϵt/h) dt dϵ, since τ(s) = −1/ϕU(s),

= − h · 1
2π

∫
g(hs|Xj)

∫
t3ϕK(t) sin(st) dt ds

= − h · 1
2π

∫ {
g(0|Xj) + g(2)(0|Xj)h2s2/2 + g(3)(s∗|Xj)h3s3/6

}
∫

t3ϕK(t) sin(st) dt ds,

= − h4

6 · 1
2π

∫
g(3)(s∗|Xj)s3

∫
t3ϕK(t) sin(st) dt ds,

where we use the third-order Taylor expansion of g(sh|Xj) around zero in the second

to the last step, with s∗ lying between 0 and sh; then we use identities in Lemma

C.2 to simplify the integrals and keep the only part that is not necessarily equal

to zero. Assuming g(3)(·|Xj) bounded and using Lemma C.2, the last expression

above suggests that E(IS(3,0)
j |Xj) is of order O(h4). Hence, the first component of the

summand in (A.10) is of order O(h4).

Given Xj, the mean of the second component of the summand in (A.10) can be

derived similarly as above, using Lemmas C.1, C.2, and C.3. And one can show that

this expectation is equal to Xj(1 + X2
j )E(IS(3,0)

j |Xj), and thus is of the same order

of E(IS(3,0)
j |Xj) derived above. Therefore, the summand in (A.10) has expectation of

order O(h4). This proves (C.3), provided Conditions (C2) and (C3) hold.

Part (VI): Show (C.6) and (C.9).

By (A.10), the order of Var(Ln) is determined by the orders of E{(IS(3,0)
j )2|Xj},

E{(IC(3,1)
j )2|Xj}, E{(IS(3,2)

j )2|Xj}, and E{(IC(3,3)
j )2|Xj}. Following similar arguments
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as those in Parts (II) and (IV), one can show that these expectations are bounded

from above by Bgh
∫

|F3,ℓ2|2ds, for ℓ2 = 0, 1, 2, 3, respectively. If U is ordinary smooth,∫
|F3,0|2ds dominates the other three according to the patterns pointed out at the end

of Part (II), which of the same order as
∫

|F1,0|2ds derived there. Therefore, using

results from Part (II), we have the order of Var(Ln) being Op{1/(nh7+2b)} if U is

ordinary smooth. This proves (C.6). If U is super smooth, one can show that

E{(IS(3,0)
j )2|Xj} = O{h1+2b2 exp(2|β1|bh−b/d2)},

E{(IC(3,1)
j )2|Xj} = O{h1+2b3 exp(2|β1|bh−b/d2)},

E{(IS(3,2)
j )2|Xj} = O{h1+2b4 exp(2|β1|bh−b/d2)},

E{(IC(3,3)
j )2|Xj} = O{h1+2b5 exp(2|β1|bh−b/d2)},

where b2 = b0I(b0 < 0.5), b3 = (2b0 − b
(1)
1 )I(2b0 − b

(1)
1 < 0.5), b4 = min{(2b0 −

b
(2)
1 )I(2b0 − b

(2)
1 < 0.5), (3b0 − 2b

(1)
1 )I(3b0 − 2b

(1)
1 < 0.5)}, and b5 = min{(2b0 −

b
(3)
1 )I(2b0−b

(3)
1 < 0.5), (3b0−b

(1)
1 −b

(2)
1 )I(3b0−b

(1)
1 −b

(2)
1 < 0.5), (4b0−b

(1)
1 −2b

(2)
1 )I(4b0−

b
(1)
1 − 2b

(2)
1 < 0.5)}. Putting these rates together gives (C.9).

Lemma C.1. If the density of U , fU(u), is an even function, then the following

identities hold, where a and b are two constants,

E{sin(a + bU)} = ϕU(b) sin(a), E{cos(a + bU)} = ϕU(b) cos(a),

E{U sin(a + bU)} = −ϕ
(1)
U (b) cos(a), E{U cos(a + bU)} = ϕ

(1)
U (b) sin(a),

E{U2 sin(a + bU)} = −ϕ
(2)
U (b) sin(a), E{U2 cos(a + bU)} = −ϕ

(2)
U (b) cos(a),

E{U3 sin(a + bU)} = ϕ
(3)
U (b) cos(a), E{U3 cos(a + bU)} = −ϕ

(3)
U (b) sin(a),

in which ϕ
(ℓ)
U (b) is the ℓ-th derivatives of ϕU(b), for ℓ = 1, 2, 3.

Proof. If fU(u) is an even function, its characteristic function reduces to

ϕU(t) =
∫

eitufU(u)du =
∫

cos(tu)fU(u)du. (C.23)
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in which Euler’s formula is used to reach the last expression. It follows that

E{sin(a + bU)} =
∫

{sin(a) cos(bu) + cos(a) sin(bu)} fU(u)du

= sin(a) ·
∫

cos(bu)fU(u)du, since sin(bu)fU(u) is an odd function,

= ϕU(b) sin(a), by (C.23).

The second identity in Lemma C.1 can be shown by differentiating both sides of

the first identity with respect to a. Each of the latter six identities can be shown by

differentiating an earlier identity on both sides with respect to b.

Lemma C.2. Let K(t) be a symmetric kernel and denote by ϕK(t) the Fourier trans-

form of it. If t2K(t) and t3K(3)(t) are integrable, K(1)(t) = o(1/t4) and K(2)(t) =

o(1/t3), as |t| → ∞, then

1
2π

∫ ∫
t sin(st)ϕK(t)dts3ds = 3µ2, where µ2 =

∫
t2K(t)dt, (C.24)

1
2π

∫ ∫
t3 sin(st)ϕK(t)dts2ds = 0, (C.25)

1
2π

∫ ∫
t3 sin(st)ϕK(t)dts3ds = −6, (C.26)

1
2π

∫ ∫
t2 cos(st)ϕK(t)dtds = 0, (C.27)

1
2π

∫ ∫
t2 cos(st)ϕK(t)dts2ds = −2. (C.28)

Proof. To show (C.24), one first observes that

1
2π

∫ ∫
t sin(st)ϕK(t)dts3ds

= 1
i

· 1
2π

∫ ∫
teistϕK(t)dts3ds

= 1
i2

∫
s3 ∂

∂s

{ 1
2π

∫
eistϕK(t)dt

}
ds

= −
∫

s3 ∂

∂s
K(s)ds, by the Fourier inverse theorem,

= −
∫

s3K(1)(s)ds

= 3
∫

s2K(s)ds, since K(1)(s) = o(1/s4) as |s| → ∞,

= 3µ2.
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To show (C.25) and (C.26), one may first derive the common inner integral as

follows,
1

2π

∫
t3 sin(st)ϕK(t)dt

= 1
i

· 1
2π

∫
t3eistϕK(t)dt

= 1
i4 · 1

2π

∫ ∂3

∂s3 eistϕK(t)dt

= ∂3

∂s3

{ 1
2π

∫
eistϕK(t)dt

}
= ∂3

∂s3 K(s), by the Fourier inversion theorem,

= K(3)(s). (C.29)

Because K(s) is an even function, K(3)(s) is an odd function. Hence, the integral

in (C.25) reduces to
∫

s2K(3)(s)ds = 0. This proves (C.25). As for (C.26), one uses

(C.29) again to simplify the integral in (C.26) to be∫
s3K(3)(s)ds

= −3
∫

s2K(2)(s)ds, since s3K(3)(s) is integrable and K(2)(s) = o(1/s3),

= 6
∫

sK(1)(s)ds, since K(2)(s) = o(1/s3) and K(1)(s) = o(1/s4),

= −6
∫

K(s)ds,

= −6.

This proves (C.26).

Lastly, the common inner integral of (C.27) and (C.28) is
1

2π

∫
t2 cos(st)ϕK(t)dt

= 1
2π

∫
t2eistϕK(t)dt

= 1
i2 · 1

2π

∫ ∂2

∂s2 eistϕK(t)dt

= − ∂2

∂s2

{ 1
2π

∫
eistϕK(t)dt

}
= − ∂2

∂s2 K(s), by the Fourier inversion theorem,

= −K(2)(s).
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Hence, the integral in (C.27) is equal to −
∫

K(2)(s)ds = 0 since K(1)(s) = o(1/s4) as

|s| → ∞. And the integral in (C.28) is equal to

−
∫

s2K(2)(s)ds = 2
∫

sK(1)(s)ds = −2
∫

K(s)ds = −2.

Lemma C.3. Define τ(t) = −1/ϕU(t), where ϕU(t) is a non-vanishing even charac-

teristic function of U that is third-order continuously differentiable. Then

τ(t)ϕ(1)
U (t) + τ (1)(t)ϕU(t) = 0,

τ(t)ϕ(2)
U (t) + 2τ (1)(t)ϕ(1)

U (t) + τ (2)(t)ϕU(t) = 0,

τ(t)ϕ(3)
U (t) + 3τ (1)(t)ϕ(2)

U (t) + 3τ (2)(t)ϕ(1)
U (t) + τ (3)(t)ϕU(t) = 0,

where τ (ℓ)(t) and ϕ
(ℓ)
U (t) are the ℓ-th derivatives of τ(t) and ϕU(t), respectively, for

ℓ = 0, 1, 2, 3.

Proof. Starting from τ(t) = −1/ϕU(t), one has

τ (1)(t) = ϕ
(1)
U (t)

ϕ2
U(t) ,

τ (2)(t) = ϕ
(2)
U (t)

ϕ2
U(t) −

2
{
ϕ

(1)
U (t)

}2

ϕ3
U(t) ,

τ (3)(t) = ϕ
(3)
U (t)

ϕ2
U(t) − 6ϕ

(1)
U (t)ϕ(2)

U (t)
ϕ3

U(t) +
6
{
ϕ

(1)
U (t)

}3

ϕ4
U(t) .

Using these three derivatives, one can show the three identities in Lemma C.3 via

straightforward algebra.
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Appendix D

Proof of Theorem 3

For completeness, we repeat the conditions regarding f(ϵ|x, t) and the covariate

stated in chapter 5 below. For a scalar s, denote by s̃ the vector (1, s)T.

(C∗1) The ℓ-th partial derivative of f(ϵ|x, t) with respect to (w.r.t.) ϵ, f (ℓ)(ϵ|x, t), is

continuously differentiable around ϵ = 0, for ℓ = 0, 1, 2, 3, and f (1)(0|x, t) = 0,

for all x and t.

(C∗2) As n → ∞, n−1∑n
j=1 f(0|Xj, Tj)Z̃jZ̃

T
j and n−1∑n

j=1 f (3)(0|Xj, Tj)Z̃j converge

in probability, and n−1∑n
j=1 f (2)(0|Xj, Tj)Z̃jZ̃

T
j converges in probability to a

negative definite matrix, where Z̃T
j = (X̃T

j , B̃T
j ).

(C∗3) As n → ∞, n−1∑n
j=1 ∥X̃j∥4 = Op(1), where ∥ · ∥ denotes the Euclidean norm.

(C∗4) The unspecified smooth function g(t) is rth continuously differentiable on [0,1],

where r > 2,

(C∗5) {g(T ) − B̃γ}h−2 = op(1), as n → ∞.

Addition conditions on the characteristic function of U and conditions on K(t) are

stated next. The first set of conditions given next are needed for proving Theorems

1 and 2 when U is ordinary smooth.

Conditions O:

(O1) As |t| → ∞, cb|t|−b−1/2 ≤ |ϕ(1)
U (t)| ≤ 2cb|t|−b−1.
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(O2) As |t| → ∞, cb(b + 1)|t|−b−2/2 ≤ |ϕ(2)
U (t)| ≤ 2cb(b + 1)|t|−b−2.

(O3) As |t| → ∞, cb(b + 1)(b + 2)|t|−b−3/2 ≤ |ϕ(3)
U (t)| ≤ 2cb(b + 1)(b + 2)|t|−b−3.

(O4)
∫

t2(2+b)ϕ2
K(t)dt < ∞, and

∫
t6ϕ2

K(t)dt < ∞.

The second set of conditions stated next are needed for proving Theorems 3 and

4 when U is super smooth.

Conditions S:

(S1) As |t| → ∞, d
(1)
0 |t|b

(1)
0 exp(−|t|b/d2) ≤ |ϕ(1)

U (t)| ≤ d
(1)
1 |t|b

(1)
1 exp(−|t|b/d2), for

some positive constants b
(1)
0 , b

(1)
1 , d

(1)
0 , and d

(1)
1 , where b

(1)
0 ≥ b0 and b

(1)
1 ≥ b1.

(S2) As |t| → ∞, d
(2)
0 |t|b

(2)
0 exp(−|t|b/d2) ≤ |ϕ(2)

U (t)| ≤ d
(2)
1 |t|b

(2)
1 exp(−|t|b/d2), for

some positive constants b
(2)
0 , b

(2)
1 , d

(2)
0 , and d

(2)
1 , where b

(2)
0 ≥ b

(1)
0 and b

(2)
1 ≥ b

(1)
1 .

(S3) As |t| → ∞, d
(3)
0 |t|b

(3)
0 exp(−|t|b/d2) ≤ |ϕ(3)

U (t)| ≤ d
(3)
1 |t|b

(3)
1 exp(−|t|b/d2), for

some positive constants b
(3)
0 , b

(3)
1 , d

(3)
0 , and d

(3)
1 , where b

(3)
0 ≥ b

(2)
0 and b

(3)
1 ≥ b

(2)
1 .

(S4) The support of ϕK(t) is [−1, 1],

(S5) 0 ≤ b(1) − b0 ≤ 1.

Conditions N∗:

(N∗1) The expectation E{U ℓf (β1U)}, for ℓ = 0, 1, 2, exists.

(N∗2) The expectation E
[{

f (3)(0|X)X
}2
]
.

(N∗3) As |t| → ∞, ϕU(t) is either purely real or pure imaginary.

(N∗4) There exist positive constants δ, e1, e2, and q such that ϕK(t) ≤ e1 (1 − t)q and

ϕK(t) ≥ e2 (1 − t)q.
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As in chapter 5, all integrations are over the entire real line R unless otherwise

specified.

Theorem 3. Under conditions (C∗1)–(C∗5) and conditions in Lemma C, there exists

a maximizer of Q∗
h(γ, β), denoted by θCK = (γ̂CK, β̂CK), such that, as n → ∞ and

h → 0,

(i) when U follows an ordinary smooth distribution of order b, if nh7+2b → 0, then

∥θ̂CK − θ∥ = O(h2) + Op

√ 1
nh3+2b

 , (D.1)

(ii) when U follows a super smooth distribution of order b,

if exp(2|β1|bh−b/d2))/(nhb6) → 0, where

b6 = max{3−2 min(b2, b3), 5−2 min(b2, b3, b4), 7−2 min(b2, b3, b4, b5)}, in which

bℓ, for ℓ = 2, 3, 4, 5, are defined in Lemma C, then

∥θ̂CK − θ∥ = O(h2) + Op

exp
(

|β1|b

d2hb

)√
1

nh3−2 min(b2,b3)

 , (D.2)

Proof. Define a series of integrals that involve in the integrand the cosine function,

a power function tℓ1 , and the ℓ2-th derivative of τ(s) = −1/ϕU(s) evaluated at β1t/h

as follows,

IC(ℓ1,ℓ2)
j(γ,β) = 1

2π

∫
tℓ1 cos

(
Yj − B̃T

j γ − W̃ T
j β

h
t

)
ϕK(t)τ (ℓ2)(β1t/h)dt, (D.3)

for nonnegative integers ℓ1 and ℓ2. For example, one can show using Euler’s formula

that, under the assumption stated in the main article that ϕK(t) and ϕU(t) are even

functions, the deconvoluting kernel evaluated at (Yj − B̃T
j γ − W̃ T

j β)/h,

K∗
(

Yj − B̃T
j γ − W̃ T

j β

h

)
= 1

2π

∫
exp

(
−i

Yj − B̃T
j γ − W̃ T

j β

h
t

)
ϕK(t)

ϕU(−β1t/h)dt,

is equal to −IC(0,0)
j(γ,β). Similarly define another series of integrals that involve in the

integrand the sine function, a power function tℓ1 , and the ℓ2-th derivative of τ(s)
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evaluated at β1t/h as follows,

IS(ℓ1,ℓ2)
j(γ,β) = 1

2π

∫
tℓ1 sin

(
Yj − B̃T

j γ − W̃ T
j β

h
t

)
ϕK(t)τ (ℓ2)(β1t/h)dt. (D.4)

To derive the convergence rate of (γ̂CK, β̂CK), the following derivatives of IC(ℓ1,ℓ2)
j(γ,β) and

IS(ℓ1,ℓ2)
j(γ,β) with respect to θ = (γ, β)T are needed,

∂IC(ℓ1,ℓ2)
j(γ,β)

∂θ
= h−1

IS(ℓ1+1,ℓ2)
j(γ,β)

B̃j

W̃j

+ IC(ℓ1+1,ℓ2+1)
j(γ,β)

0̃q×1

ẽ1


 ,

∂IS(ℓ1,ℓ2)
j(γ,β)

∂θ
= h−1

−IC(ℓ1+1,ℓ2)
j(γ,β)

B̃j

W̃j

+ IS(ℓ1+1,ℓ2+1)
j(γ,β)

0̃q×1

ẽ1


 ,

(D.5)

where ẽ1 = (0, 1)T . To reveal the convergence rate of θ̂CK, denoted by δn, we aim

to establish a sufficient condition for ∥θ̂CK − θ∥ = Op(δn), which states that, for any

given ρ > 0, there exists a constant c such that

P

{
sup

∥d∥=c

Q∗
h(θ + δnd) < Q∗

h(θ)
}

≥ 1 − ρ. (D.6)

This sufficient condition motivates us to consider the difference ∆(δn) = Q∗
h(θ +

δnd) − Q∗
h(θ). In particular, a third-order Taylor expansion of ∆(δn) around zero

gives

∆(δn) = ∆(0) + δn∆(1)(0) + 0.5δ2
n∆(2)(0) + 6−1r3

n∆(3)(δ∗),

where δ∗ lies between zero and δn, ∆(0) = 0,

∆(1)(0) = ∂Q∗
h(θ̃)

∂θ̃T

∣∣∣∣∣
θ̃=θ

d = KT
n d,

∆(2)(0) = dT ∂2Q∗
h(θ̃)

∂θ̃∂θ̃T

∣∣∣∣∣
θ̃=θ

d = dTJnd,

∆(3)(r∗) = dTLndTd,
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in which, by (D.5),

Kn = ∂Q∗
h(θ)

∂θ
= 1

nh

n∑
j=1

∂

∂θ
K∗

(
Yj − (B̃T

j , W̃ T
j )θ

h

)

= − 1
nh2

n∑
j=1

IS(1,0)
j(γ,β)

B̃j

W̃j

+ IC(1,1)
j(γ,β)

0q×1

ẽ1


 , (D.7)

Jn = ∂2Q∗
h(θ)

∂θ∂θT
= − 1

nh3

n∑
j=1

−IC(2,0)
j(γ,β)

A1 C1

CT
1 D1

+ IS(2,1)
j(γ,β)

A2 C2

CT
2 D2



+IC(2,2)
j(γ,β)

A3 C3

CT
3 D3


 , (D.8)

Ln = − 1
nh3

n∑
i=1

−

A1 C1

CT
1 D1

 ∂IC(2,0)
j(γ,β)

∂θ
+

A2 C2

CT
2 D2

 ∂IS(2,1)
j(γ,β)

∂θ

+

A3 C3

CT
3 D3

 ∂IC(2,2)
j(γ,β)

∂θ


∣∣∣∣∣∣∣∣
θ=θ∗

= 1
nh4

n∑
j=1

IS(3,0)
j(γ,β)

A1B̃j + C1W̃j

CT
1 B̃j + D1W̃j

+ IC(3,1)
j(γ,β)

C1ẽ1 + A2B̃j + C2W̃j

D1ẽ1 + CT
2 B̃j + D2W̃j

−

IS(3,2)
j(γ,β)

C2ẽ1 + A3B̃j + C3W̃j

D2ẽ1 + CT
3 B̃j + D3W̃j

− IC(3,3)
j(γ,β)

C3ẽ1

D3ẽ1



∣∣∣∣∣∣∣∣
θ=θ∗

, (D.9)

where 

A1 = B̃jB̃
T
j , C1 = B̃jW̃

T
j , D1 = W̃jW̃

T
j ,

A2 = 0̃q×q, C2 =
[
0q×1, B̃j

]
, D2 =

0 1

1 2Wj

 ,

A3 = 0̃q×q, C3 = 0q×2, D3 =

0 0

0 1

 ,

(D.10)

θ∗ lying between θ and θ + δnd, corresponding to δ∗ lying between zero and δn.

In summary, we have

Q∗
h(θ + δnd) − Q∗

h(θ) = δnKT
n d + 0.5δ2

ndTJnd + 6−1δ3
ndTLndTd. (D.11)
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In order to reveal δn that satisfies (D.6), we study the orders of Jn, Kn, and Ln

based on the mean-variance decomposition given by V = E(V ) + Op{
√

Var(V )}, for

a random variable V under regularity conditions. The means and variances of Jn, Kn

and Ln are derived in Appendix F, with results summarized in Lemma C.

Define µ2 =
∫

t2K(t)dt. If the measurement error distribution is ordinary smooth

of order b, by Lemma C, we have

Kn = µ2h
2

2n

n∑
j=1

f (3)(0|Xj, Tj)Z̃j{1 + op(1)} + Op

(
1/

√
nh3+2b

)
,

Jn = 1
n

n∑
j=1

f (2)(0|Xj, Tj)Z̃jZ̃
T
j {1 + op(1)} + Op

(
1/

√
nh5+2b

)
,

Ln = Op(1) + Op

(
1/

√
nh7+2b

)
,

(D.12)

where Z̃T
j =

(
B̃T

j , X̃T
j

)
. Based on these rates, by setting δn = h2 + 1/

√
nh3+2b,

one can show that (D.11) is dominated by the second term for a large enough c,

which is negative definite in probability by condition (C∗2). More specifically, the

first term in the right-hand side of (D.11) is of order O(δ2
n), the second terms is

0.5δ2
ndTJ∗d{1 + op(1)}, where J∗ = limn→∞ n−1∑n

j=1 f (2)(0|j)Z̃jZ̃
T
j , and the third

term is of order op(δ2
n) provided that nh7+2b → 0. Hence, for a large enough c, (D.6)

holds for δn = h2 + 1/
√

nh3+2b. In fact, the rate δn is determined by the rate of

Kn, which has h2 as the order of the bias of θ̂CK and 1/
√

nh3+2b as the order of its

standard error. This leads to (D.1).

If the measurement error distribution is super smooth of order b, by Lemma C,

we have 

Kn = µ2h
2

2

n∑
j=1

f (3)(0|Xj, Tj)Z̃j{1 + op(1)}

+ Op

{√
exp(2|β1|bh−b/d2)/(nh3−2 min(b2,b3))

}
,

Jn = 1
n

n∑
j=1

f (2)(0|Xj, Tj)Z̃jZ̃
T
j {1 + op(1)}

+ Op

{√
exp(2|β1|bh−b/d2)/(nh5−2 min(b2,b3,b4))

}
,

Ln = Op(1) + Op

{√
exp(2|β1|bh−b/d2)/(nh7−2 min(b2,b3,b4,b5))

}
,
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where bℓ, for ℓ = 2, 3, 4, 5, are defined in Lemma C. Based on these rates, by setting

δn = h2 +
√

exp(2|β1|bh−b/d2)/(nh3−2 min(b2,b3)), one can show that (D.11) is again

dominated by the second term for a large enough c. Thus, for a large enough c, (D.6)

holds for δn = h2 +
√

exp(2|β1|bh−b/d2)/(nh3−2 min(b2,b3)). This proves (D.2).
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Appendix E

Proof of Theorem 4

Theorem 4. Under the same assumptions imposed in Theorem 3,

(i) if U follows an ordinary smooth distribution of order b,

√
nh3+2b

(
β̂CK − β − h2µ2I

∗−1Q/4
)

d−→ N(0, I∗−1MLI∗−1); (E.1)

where ML is constant matrices.

(ii) if U follows a super smooth distribution of order b,

{
Var(β̂CK)

}−1/2 (
β̂CK − β − h2µ2I

∗−1Q/4
)

d−→ N(0, 1), (E.2)

where

Q = lim
n→∞

n−1
n∑

j=1
E{f (3)(0|Xj, Tj)X̃j},

I∗ = lim
n→∞

n−1
n∑

j=1
E
{
f (2)(0|Xj, Tj)X̃jX̃

T
j + X̃jB

T
j Φ−1Ψ

}
,

Var(β̂CK) = O[exp{2|β1|b/(d2h
b)}/{nh3−2 min(b2,b3)}], and Σ−1/2 denotes the in-

verse of the positive definite square root of a positive definite matrix Σ.

Proof. Define a series of integrals that involve in the integrand the cosine function,

a power function tℓ1 , and the ℓ2-th derivative of τ(s) = −1/ϕU(s) evaluated at β1t/h

as follows,

IC(ℓ1,ℓ2)
j(g,β) = 1

2π

∫
tℓ1 cos

(
Yj − g(Tj) − W̃ T

j β

h
t

)
ϕK(t)τ (ℓ2)(β1t/h)dt, (E.3)

IC(ℓ1,ℓ2)
jη∗

j
= 1

2π

∫
tℓ1 cos

(
η∗

j t
)

ϕK(t)τ (ℓ2)(β1t/h)dt, (E.4)
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where η∗
j is between

Y − g(Tj) − W̃ T
j β

h
and

Y − B̃T
j γ̂CK − W̃ T

j β̂CK

h
. Similarly define

another series of integrals that involve in the integrand the sine function, a power

function tℓ1 , and the ℓ2-th derivative of τ(s) evaluated at β1t/h as follows,

IS(ℓ1,ℓ2)
j(g,β) = 1

2π

∫
tℓ1 sin

(
Yj − g(Tj) − W̃ T

j β

h
t

)
ϕK(t)τ (ℓ2)(β1t/h)dt. (E.5)

IS(ℓ1,ℓ2)
jη∗

j
= 1

2π

∫
tℓ1 sin

(
η∗

j t
)

ϕK(t)τ (ℓ2)(β1t/h)dt, (E.6)

Because θ̂CK = (β̂CK, γ̂CK) maximizes Q∗
h(β, γ) = (nh)−1∑n

j=1 K∗{(Yj − B̃jγ −

W̃jβ)/h}, one has

L1(β̂CK, γ̂CK)

= − 1
nh2

n∑
j=1

IS(1,0)
j(γ,β)

∣∣∣∣
γ=γ̂CK,β=β̂CK

 1

Wj

+ IC(1,1)
j(γ,β)

∣∣∣∣
γ=γ̂CK,β=β̂CK

0

1




= 0̃2×1,

L2(β̂CK, γ̂CK)

= − 1
nh2

n∑
j=1

IS(1,0)
j(γ,β)

∣∣∣∣
γ=γ̂CK,β=β̂CK

B̃j = 0̃q×1, (E.7)

where L1 = ∂Q∗
h(β, γ)/∂β and L2 = ∂Q∗

h(β, γ)/∂γ. Let Rj = g(Tj)−B̃T
j γ, by doing

taylor expansion around
Yj − g(Tj) − W̃ T

j β

h
t, some simple calculation yields,

L1(β̂CK, γ̂CK) =

− 1
nh2

n∑
j=1


IS(1,0)

j(g,β)

 1

Wj

+ IC(1,1)
j(g,β)

0

1


−

IS(2,0)
j(g,β)

 1

Wj

− IC(2,1)
j(g,β)

0

1




{
Rjh

−1 − W̃ T
j

(
β̂CK − β

)
h−1 − B̃T

j (γ̂CK − γ) h−1
}

−1
2

IS(3,0)
jη∗

j

 1

Wj

+ IC(3,1)
jη∗

j

0

1




{
Rjh

−1 − W̃ T
j

(
β̂CK − β

)
h−1 − B̃T

j (γ̂CK − γ) h−1
}2
]

+op

(
β̂CK − β

)
= 0̃, (E.8)
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Similarly,

L2(β̂CK, γ̂CK)

= − 1
nh2

n∑
j=1

[
IS(1,0)

j(g,β)B̃j

+IC(2,0)
j(g,β)B̃j

{
Rjh

−1 − W̃ T
j

(
β̂CK − β

)
h−1 − B̃T

j (γ̂CK − γ) h−1
}

−1
2IS(3,0)

jη∗
j

B̃j

{
Rjh

−1 − W̃ T
j

(
β̂CK − β

)
h−1 − B̃T

j (γ̂CK − γ) h−1
}2
]

+op (γ̂CK − γ) = 0̃, (E.9)

Let Φ = lim
n→∞

1
n

n∑
i=1

f (2)(0|Xj, Tj)B̃jB̃
T
j and Ψ = lim

n→∞

1
n

n∑
i=1

f (2)(0|Xj, Tj)B̃jX̃
T
j , then,

by the result of (F.13) and (F.16), after some calculations based on (E.9), it follows

that

γ̂CK − γ = (Φ + op(1))−1
{
−Ψ

(
β̂CK − β

)
+ op(1)

}
(E.10)

Substituting (E.10) into (E.8), we have

Mn + op(1) = In

(
β̂CK − β

)
, (E.11)

where

Mn = 1
nh2

n∑
j=1

(
IS(1,0)

j(g,β)W̃j + IC(1,1)
j(g,β)ẽ1

)
, (E.12)

In = 1
nh3

n∑
j=1

(
IC(2,0)

j(g,β)W̃j − IS(2,1)
j(g,β)ẽ1

) (
W̃ T

j + BT
j Φ−1Ψ

)
. (E.13)

Part (I): Show (E.1). When U is ordinary smooth, define M∗
n =

√
nh3+2bMn. We

next show that,

{pTCov(M∗
n)p}−1/2 pT{M∗

n − E(M∗
n)} d−→ N(0, 1),

for any unit vector p = (p1, p2)T ∈ R2, (E.14)

where “ d−→" refers to convergence in distribution. Once (E.14) is proved, we conclude

the asymptotic normality of M∗
n by the Cramér-Wold Theorem (Cramer and Wold,
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1936), and thus the asymptotic normality of Mn. By (D.7), pTM∗
n = ∑n

j=1 ξj, where

ξj = − hb

√
nh

pT

IS(1,0)
j(g,β)

 1

Wj

+ IC(1,1)
j(g,β)

0

1


 .

Define mj = E(ξj|Xj) and S2
n = ∑n

j=1 Var(ξj|Xj). We next use the Lyapunov Central

Limit Theorem to show the asymptotic normality of pTM∗
n. This requires proving

the Lyapunov’s conditions (Billingsley, 2008), which states that

lim
n→∞

1
S2+δ

n

n∑
j=1

E|ξj − mj|2+δ = 0, for some δ > 0. (E.15)

In particular, we show that (E.15) is satisfied for δ = 1.

First, because ξ1, . . . , ξn are independent,

S2
n = Var

 n∑
j=1

ξj


= E

Var
 n∑

j=1
ξj

∣∣∣∣∣∣X
+ Var

E

 n∑
j=1

ξj

∣∣∣∣∣∣X


= pTE {Var (M∗
n|X)} p + pTVar {E (M∗

n|X)} p (E.16)

From Part (I) of the proof for Lemma C in Appendix C, one can have ,under condition

(N2), the second term in (E.16) converges to zero as n → ∞. The first term is equal

to the expectation of, by (E.13)

h2b−1pTVar

IS(1,0)
j(g,β)

 1

Wj

+ IC(1,1)
j(g,β)

0

1


∣∣∣∣∣∣∣∣Xj, Tj

p (E.17)

which involve h2b−1 multiplying the following expectations,

E
{(

IS(1,0)
j(g,β)

)2
∣∣∣∣Xj

}
, E

{(
IS(1,0)

j(g,β)

)2
Wj

∣∣∣∣Xj

}
, E

{(
IS(1,0)

j(g,β)

)2
W 2

j

∣∣∣∣Xj

}
,

E
(

IS(1,0)
j(g,β)IC

(1,1)
j(g,β)

∣∣∣Xj

)
, E

(
IS(1,0)

j(g,β)IC
(1,1)
j(g,β)Wj

∣∣∣Xj

)
, E

{(
IC(1,1)

j(g,β)

)2
∣∣∣∣Xj

}
.

(E.18)

These expectations are studied in details in the proof for Lemma C in Appendix C.

For ordinary smooth measurement error, based on the results derived there, one has
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S2
n = pTMLp + o(1), where ML is a constant matrix as the limit of Var(M∗

n|X) as

n → ∞.

Second, following similar derivations for the aforementioned expectations, one can

show that multiplying the following three expectations by n−1/2h3(b−1/2) all lead to

quantities that tend to zero as n → ∞,

E
(∣∣∣IS(1,0)

j(g,β)

∣∣∣3∣∣∣∣Xj, Tj

)
, E

(∣∣∣IS(1,0)
j(g,β)Wj

∣∣∣3∣∣∣∣Xj, Tj

)
, E

(∣∣∣IC(1,1)
j(g,β)

∣∣∣3∣∣∣∣Xj, Tj

)
. (E.19)

These imply that, as n → ∞,

nE(|ξj|3|Xj, Tj) = n−1/2h3(b−1/2)E
(∣∣∣p1IS(1,0)

j(g,β) + p2IS(1,0)
j(g,β)Wj + p2IC(1,1)

j(g,β)

∣∣∣3∣∣∣∣Xj, Tj

)
→ 0.

It follows that limn→∞
∑n

j=1 |ξj − mj|3 = 0. This and the previous conclusion re-

garding S2
n together lead to the Lyapunov’s conditions in (E.15), which is a sufficient

condition for, taking into account the asymptotic mean of Mn according to Lemma

C,
√

nh3+2b
(
Mn − µ2Qh2/2

)
d−→ N(0, ML).

Finally, by the Slutsky’s Theorem, we have (E.1).

Part (II): Show (E.2).

When U is super smooth, define M∗
n = exp{−2|β1|b/(d2h

b)}
√

nh3−2 min(b2,b3)Mn.

Now we have pTM∗
n = ∑n

j=1 ξj with

ξj = − exp
(

−2|β1|b

d2hb

)
1√

nh1+min(b2,b3)
pT

IS(1,0)
j(g,β)

 1

Wj

+ IC(1,1)
j(g,β)

0

1


 .

The remaining task is to show (E.15) for the so-defined ξj. This leads one to look into

the expectations in (E.18) and those in (E.19), following the strategies used in the

proof for Lemma C, under conditions (N3), (N4) and (S1), one can have |IS
(0,1)
j(g,β)|2 is

bounded from below by a quantity of order h2b1+2(q+1)b exp
{
2|β1|b/(d2h

b)
}
. Similarly,
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|IC
(1,1)
j(g,β)|2 is bounded from below by a quantity of order

h4b1−2b
(1)
0 +2(q+1)b exp

{
2|β1|b/(d2h

b)
}
, and |IS

(1,0)
j(g,β)IC

(1,1)
j(g,β)| is bounded from below by

a quantity of order

hb1+2b1−b
(1)
0 +2(q+1)b exp

{
2|β1|b/(d2h

b)
}
. It follows that S3

n is bounded from below by a

quantity of order

h3{(q+1)b−0.5−min(b2,b3)+min(b1,2b1−b
(1)
0 )} exp

{
−3|β1|b/(d2h

b)
}

as n → ∞. This, along with

the aforementioned result regarding limn→∞
∑n

j=1 |ξ∗
j − mj|3, implies (E.15).

Furtherm assuming that limn→∞ Var(M∗
n|X) exists, and denoting its expectation by

MN , which leads to

exp
(

−2|β1|b

d2hb

)√
nh3−2 min(b2,b3)

(
Mn − µ2Qh2/2

)
d−→ N(0, MN).

Lastly, one uses the Slutsky’s Theorem to conclude (E.2).
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Appendix F

Lemmas referenced in Appendices D and E

Lemma F. Assume E(U4) < ∞, and assume conditions stated in Lemmas C.1, C.2,

and C.3 hold. Define µ2 =
∫

t2K(t)dt, X = (X1, . . . , Xn), T = (T1, . . . , Tn) and

Z̃T
j = (X̃T

j , B̃T
j ). For Kn, Jn and Ln given by (D.7), (D.8), and (D.9), respectively,

we have

E(Kn|X, T ) = µ2h
2

2n

n∑
j=1

g(3)(0|Xj, Tj)Z̃j{1 + op(1)}, (F.1)

E(Jn|X, T ) = 1
n

n∑
j=1

g(2)(0|Xj, Tj)Z̃jZ̃
T
j {1 + op(1)}, (F.2)

E(Ln|X, T ) = Op(1). (F.3)

And when U is ordinary smooth of order b, under Conditions O, we have

Var(Kn|X, T ) = Op{1/(nh3+2b)}, (F.4)

Var(Jn|X, T ) = Op{1/(nh5+2b)}, (F.5)

Var(Ln|X, T ) = Op{1/(nh7+2b)}; (F.6)

when U is super smooth of order b, under Conditions S, we have

Var(Kn|X, T ) = Op{exp(2|β1|bh−b/d2)/(nh3−2 min(b2,b3))}, (F.7)

Var(Jn|X, T ) = Op{exp(2|β1|bh−b/d2)/(nh5−2 min(b2,b3,b4))}, (F.8)

Var(Ln|X, T ) = Op{exp(2|β1|bh−b/d2)/(nh7−2 min(b2,b3,b4,b5))}, (F.9)

where b2 = b0I(b0 < 0.5), b3 = (2b0 − b
(1)
1 )I(2b0 − b

(1)
1 < 0.5), b4 = min{(2b0 −

b
(2)
1 )I(2b0 − b

(2)
1 < 0.5), (3b0 − 2b

(1)
1 )I(3b0 − 2b

(1)
1 < 0.5)}, and b5 = min{(2b0 −
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b
(3)
1 )I(2b0−b

(3)
1 < 0.5), (3b0−b

(1)
1 −b

(2)
1 )I(3b0−b

(1)
1 −b

(2)
1 < 0.5), (4b0−b

(1)
1 −2b

(2)
1 )I(4b0−

b
(1)
1 − 2b

(2)
1 < 0.5)}.

Proof. The proof consists of six parts to establish (F.1)–(F.9). We first define a

series of integrals as follows, with integrands involving tℓ1 and the ℓ2-th derivative of

τ(s) = −1/ϕU(s) evaluated it s = β1t/h,

Fℓ1,ℓ2(s) = 1
2π

∫
eisttℓ1ϕK(t)τ (ℓ2)(β1t/h)dt, (F.10)

for nonnegative integers ℓ1 and ℓ2.

Part (I): Show (F.1). Note that Rj = g(Tj) − B̃T
j γ, by Corollary 6.21 in Schumaker

(2007), one has

∥Rj∥ = O(n−r/(2r+1)) (F.11)

By (D.7), Taylor expansion of Kn around
Yj − g(Tj) − W̃ T

j β

h
t yields

Kn = − 1
nh2

n∑
j=1

IS(1,0)
j(g,β)

B̃j

W̃j

+ IC(1,1)
j(g,β)

0q×1

ẽ1




− 1
nh2

n∑
j=1

IC(2,0)
j(g,β)

B̃j

W̃j

− IS(2,1)
j(g,β)

0q×1

ẽ1


h−1Rj

+ 1
2nh2

n∑
j=1

IS(3,0)
jη∗

j

B̃j

W̃j

+ IC(3,1)
jη∗

j

0q×1

ẽ1


h−2R2

j + op(1) (F.12)

where η∗
j lying between

Y − g(Tj) − W̃ T
j β

h
and

Y − B̃T
j γ̂CK − W̃ T

j β̂CK

h
. By (F.12)
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and assumptions C4 and C5,

E(Kn|X, T ) = − 1
nh2

n∑
j=1

 E
(

IS(1,0)
j(g,β)B̃j

∣∣∣Xj, Tj

)
E
(

IS(1,0)
j(g,β)W̃j + IC(1,1)

j(g,β)ẽ1

∣∣∣Xj, Tj

)


− 1
nh2

n∑
j=1

 E
(

IC(2,0)
j(g,β)B̃j

∣∣∣Xj, Tj

)
E
(

IC(1,0)
j(g,β)W̃j − IS(1,1)

j(g,β)ẽ1

∣∣∣Xj, Tj

)
h−1Rj

+ 1
2nh2

n∑
j=1

 E
(

IS(3,0)
jη∗

j
B̃j

∣∣∣∣Xj, Tj

)
E
(

IS(3,0)
jη∗

j
W̃j + IC(1,1)

jη∗
j

ẽ1

∣∣∣∣Xj, Tj

)
h−2R2

j .

Recall that, given X = x and T = t, the mode residual, ϵ = Y − g(T ) − X̃T β, follows

a distribution specified by the pdf f(ϵ|x), and fY |X(y|x) = f
{
y − g(T ) − x̃T β|x, t

}
.

It follows that, for the first element in the 2 × 1 summand of the first term of

E (Kn|Xj, Tj) above, we have

E
(

IS(1,0)
j(g,β)

∣∣∣Xj, Tj

)
=E

{
1

2π

∫
t sin

(
Yj − g(T ) − W̃ T β

h
t

)
ϕK(t)τ(β1t/h)dt

∣∣∣∣∣Xj, Tj

}

= 1
2π

∫
f(ϵ|Xj, Tj)

∫
tϕK(t)τ(β1t/h)

∫
sin

(
ϵ − β1u

h
t

)
fU(u)du dt dϵ

= 1
2π

∫
f(ϵ|Xj, Tj)

∫
tϕK(t)τ(β1t/h)ϕU(−β1t/h) sin(ϵt/h)dt dϵ, by Lemma C.1,

= − 1
2π

∫
f(ϵ|Xj, Tj)

∫
tϕK(t) sin(ϵt/h)dt dϵ,

= − h · 1
2π

∫
f(sh|Xj, Tj)

∫
tϕK(t) sin(st)dt ds

= − h · 1
2π

∫ {
f(0|Xj, Tj) + 0.5f (2)(0|Xj, Tj)s2h2 + 6−1f (3)(0|Xj, Tj)s3h3

+ 24−1f (4)(s∗|Xj, Tj)s4h4
}

·∫
tϕK(t) sin(st)dt ds, for some s∗ lying between 0 and sh,

= − 0.5µ2h
4f (3)(0|Xj, Tj) + Op(h5), by Lemma C.2. (F.13)

The second element in the 2 × 1 summand of the first term of E(Kn|X, T ) above
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involves

E
(

IS(1,0)
j(g,β)Wj + IC(1,1)

j(g,β)

∣∣∣Xj, Tj

)
=XjE

(
IS(1,0)

j(g,β)

∣∣∣Xj, Tj

)
+ E

(
IS(1,0)

j(g,β)Uj

∣∣∣Xj, Tj

)
+E

(
IC(1,1)

j(g,β)

∣∣∣Xj, Tj

)
,

where the first expectation is derived above, and the latter two expectations sum to

zero, as we show next. Following a similar elaboration of E(IS(1,0)
j(g,β)|Xj, Tj) above,

one has

E
(

IS(1,0)
j(g,β)Uj

∣∣∣Xj, Tj

)
+ E

(
IC(1,1)

j(g,β)

∣∣∣Xj, Tj

)
= 1

2π

∫
f(ϵ|Xj, Tj)

∫
tϕK(t)τ(β1t/h)

∫
u sin

(
ϵ − β1u

h
t

)
fU(u)du dt dϵ+

1
2π

∫
f(ϵ|Xj, Tj)

∫
tϕK(t)τ (1)(β1t/h)

∫
cos

(
ϵ − β1u

h
t

)
fU(u)du dt dϵ

= 1
2π

∫
f(ϵ|Xj, Tj)

∫
tϕK(t)τ(β1t/h) · (−1) · ϕ

(1)
U (−β1t/h) cos(ϵt/h)dt dϵ+

1
2π

∫
f(ϵ|Xj, Tj)

∫
tϕK(t)τ (1)(β1t/h)ϕU(−β1t/h) cos(ϵt/h)dt dϵ, by Lemma C.1,

= 1
2π

∫
f(ϵ|Xj, Tj)

∫
tϕK(t)

{
τ(β1t/h)ϕ(1)

U (β1t/h)

+τ (1)(β1t/h)ϕU(β1t/h)
}

cos(ϵt/h)dt dϵ,

where, by Lemma C.3, the expression within the curly brackets is equal to zero.

Hence, the summand of the first term of E(Kn|X, T ) is equal to

−0.5µ2h
4f (3)(0|Xj, Tj)Z̃j + Op(h5). Because the assumption (C∗5), under conditions

that guarantee boundedness of IS(3,0)
j(g,β) and IC(1,1)

j(g,β), similar as the strategy in the first

term of EKn, one can show,

E
(

IS(3,0)
jη∗

j
B̃j

∣∣∣∣Xj, Tj

)
= op(h4),

E
(

IS(3,0)
jη∗

j
W̃j + IC(1,1)

j(g,β)ẽ1

∣∣∣∣Xj, Tj

)
= op(h4). (F.14)

Based on (F.14) and assumption (C∗5), one can have the third term of E(Kn|X, T )

is op(1). Next, we show the second terms of E(Kn|X, T ) is op(1). Note that, the first
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element in the 2 × 1 summand is

− E
(

IC(2,0)
j(g,β)

∣∣∣Xj, Tj

)
(F.15)

= − 1
2π

∫
f(ϵ|Xj, Tj)

∫
t2ϕK(t)τ(β1t/h)

∫
cos

(
ϵ − β1u

h
t

)
fU(u)du dt dϵ

= − 1
2π

∫
f(ϵ|Xj, Tj)

∫
t2ϕK(t)τ(β1t/h)ϕU(−β1t/h) cos(ϵt/h)dt dϵ, by Lemma C.1,

= 1
2π

∫
f(ϵ|Xj, Tj)

∫
t2ϕK(t) cos(ϵt/h)dt dϵ, since τ(s) = −1/ϕU(s),

= h · 1
2π

∫
f(hs|Xj, Tj)

∫
t2ϕK(t) cos(st)dt ds

= h · 1
2π

∫ {
f(0|Xj, Tj) + f (2)(0|Xj, Tj)h2s2/2 + Op(h3)

} ∫
t2ϕK(t) cos(st)dt ds

= h · f(0|Xj, Tj) · 1
2π

∫ ∫
t2ϕK(t) cos(st)dt ds+

h3

2 f (2)(0|Xj, Tj) · 1
2π

∫ ∫
t2ϕK(t) cos(st)dt s2 ds + Op(h4)

= −h3f (2)(0|Xj) + Op(h4), by Lemma C.2. (F.16)

In addition, the second element in the 2 × 1 summand involves

− E
(

IC(2,0)
j(g,β)Uj

∣∣∣Xj, Tj

)
+ E

(
IS(2,1)

j(g,β)

∣∣∣Xj, Tj

)
= − 1

2π

∫
f(ϵ|Xj, Tj)

∫
t2ϕK(t)τ(β1t/h)

∫
u cos

(
ϵ − β1u

h
t

)
fU(u)du dt dϵ+

1
2π

∫
f(ϵ|Xj, Tj)

∫
t2ϕK(t)τ (1)(β1t/h)

∫
sin

(
ϵ − β1u

h
t

)
fU(u)du dt dϵ

= − 1
2π

∫
f(ϵ|Xj, Tj)

∫
t2ϕK(t)τ(β1t/h)ϕ(1)

U (−β1t/h) sin(ϵt/h)dt dϵ+
1

2π

∫
f(ϵ|Xj, Tj)

∫
t2ϕK(t)τ (1)(β1t/h)ϕU(−β1t/h) sin(ϵt/h)dt dϵ, by Lemma C.1,

= 1
2π

∫
f(ϵ|Xj, Tj)

∫
t2ϕK(t)

{
τ(β1t/h)ϕ(1)

U (β1t/h)

+τ (1)(β1t/h)ϕU(β1t/h)
}

sin(ϵt/h)dt dϵ, (F.17)

where, by Lemma C.3, the part of the integrand insides the curly brackets is equal to

zero. Based on (F.16), (F.17) and assumption (C∗5), one can have the second term

of EKn is op(1). After combining three summands in EKn, one can have (F.1).

Part (II): Show (F.4) and (F.7).
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By (F.12) and assumption (C∗5), the order of Var(Kn|X) is determined by

1
nh4 E {

(
IS(1,0)

j(g,β)

)2

B̃jB̃
T
j B̃jW̃

T
j

W̃jB̃
T
j W̃jW̃

T
j

+ IS(1,0)
j(g,β)IC

(1,1)
j(g,β)

0̃q×q B̃j ẽ
T
1

0̃2×q W̃j ẽ
T
1



+
(
IC(1,1)

j(g,β)

)2

0̃q×q 0̃q×2

0̃2×q ẽ1ẽ
T
1


∣∣∣∣∣∣∣∣Xj, Tj

 . (F.18)

We next derive the six expectations involved in (F.18), also listed in (E.18) for proving

Theorem 2. Among these six expectations,

E
{(

IS(1,0)
j(g,β)

)2
Wj

∣∣∣∣Xj, Tj

}
= E

{(
IS(1,0)

j(g,β)

)2
Uj

∣∣∣∣Xj, Tj

}
+ E

{(
IS(1,0)

j(g,β)

)2
∣∣∣∣Xj, Tj

}
Xj,

E
{(

IS(1,0)
j(g,β)

)2
W 2

j

∣∣∣∣Xj, Tj

}
= E

{(
IS(1,0)

j(g,β)

)2
U2

j

∣∣∣∣Xj, Tj

}
+ 2E

{(
IS(1,0)

j(g,β)

)2
Uj

∣∣∣∣Xj, Tj

}
Xj

+ E
{(

IS(1,0)
j(g,β)

)2
∣∣∣∣Xj, Tj

}
X2

j .

It can be shown that, provided that the first two moments of U exist,

E{(IS(1,0)
j(g,β))2Uj|Xj, Tj} and E{(IS(1,0)

j(g,β))2U2
j |Xj, Tj} have the same rate as

E{(IS(1,0)
j(g,β))2|Xj, Tj}. Hence, E{(IS(1,0)

j(g,β))2Wj |Xj, Tj} and E{(IS(1,0)
j(g,β))2W 2

j |Xj, Tj}

have the same rate as E{(IS(1,0)
j(g,β))2|Xj, Tj}. Similarly, E(IS(1,0)

j(g,β)IC
(1,1)
j(g,β)Wj|Xj, Tj) is of

the same order as E(IS(1,0)
j(g,β)IC

(1,1)
j(g,β)|Xj, Tj), which, according to the Cauchy-Schwarz

inequality, is bounded from above by
√

E{(IS(1,0)
j(g,β))2|Xj, Tj} ·

√
E{(IC(1,0)

j(g,β))2|Xj, Tj}.

Hence, we only need to focus on E{(IS(1,0)
j(g,β))2|Xj, Tj} and E{(IC(1,0)

j(g,β))2 |Xj, Tj} next.
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First, by (D.4),

E
{(

IS(1,0)
j(g,β)

)2
∣∣∣∣Xj = x, Tj = z

}

= E

{ 1
2π

∫
t sin

(
Yj − g(Tj) − W̃ T

j β

h
t

)
ϕK(t)

ϕU(β1t/h)dt

}2∣∣∣∣∣∣Xj = x, Tj = z


=
∫

fU(u)
∫ {

1
2π

∫
t sin

(
ϵ − β1u

h
t

)
ϕK(t)

ϕU(β1t/h)dt

}2

f(ϵ|x)dϵdu

≤ Bfh
∫

fU(u)
∫

| − F1,0(s)|2dsdu

= Bfh
∫

|F1,0(s)|2ds, (F.19)

where Bf = supx supϵ f(ϵ|x). When U is ordinary smooth of order b, by Definition 1

in the main article, there exists a constant M > 0 such that

∫
|F1,0(s)|2ds = 1

2π

∫
t2 ϕ2

K(t)
ϕ2

U(β1t/h)dt, by the Parseval’s Theorem, (F.20)

= 1
2π

∫
|β1t|≤Mh

t2 ϕ2
K(t)

ϕ2
U(β1t/h)dt + 1

2π

∫
|β1t|>Mh

t2 ϕ2
K(t)

ϕ2
U(β1t/h)dt

≤ 1
2π

{
inf

|β1t|≤Mh
|ϕU(β1t/h)|

}−2 ∫
|β1t|≤Mh

t2ϕ2
K(t)dt

+ 1
2π

∫
|β1t|>Mh

t2 ϕ2
K(t)

(c2/4)|β1t/h|−2b
dt

= O(h−2b), under Condition (O4).

Hence, for ordinary smooth U , (F.19) suggests E{(IS(1,0)
j(g,β))2|Xj, Tj} = O(h1−2b).

When U is super smooth of order b, by Definition 2 in the main article, following

(F.20), one has,

∫
|F1,0(s)|2ds

≤ 1
2π

{
inf

|β1t|≤Mh
|ϕU(β1t/h)|

}−2 ∫
|β1t|≤Mh

t2ϕ2
K(t)dt

+ 1
2π

∫
Mh<|β1t|≤|β1|

t2 ϕ2
K(t)

d2
0|β1t/h|2b0 exp(−2|β1t/h|b/d2)

dt

≤C1

∫
|β1t|≤Mh

t2ϕ2
K(t)dt + C2h

2b0 exp(2|β1|bh−b/d2)
∫

Mh<|β1t|≤|β1|
t2 ϕ2

K(t)
|t|2b0

dt

=O{h2b2 exp(2|β1|bh−b/d2)},
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where b2 = b0I(b0 < 0.5). Hence, for super smooth U , E{(IS(1,0)
j(g,β))2|Xj, Tj} =

O{h1+2b2 exp(2|β1|bh−b/d2)}.

Similarly,

E
{(

IC(1,1)
j(g,β)

)2
∣∣∣∣Xj = x, Tj = z

}
≤ Bfh

∫
fU(u)

∫
|F1,1(s)|2dsdu = Bfh

∫
|F1,1(s)|2ds. (F.21)

When U is ordinary smooth of order b, using the definition of τ (1)(s),
∫

|F1,1(s)|2ds

= 1
2π

∫
t2ϕ2

K(t)

ϕ
(1)
U (β1t/h)

ϕ2
U(β1t/h)


2

dt, next use Definition 1 and Condition (O1),

(F.22)

≤ 1
2π

sup
|β1t|≤Mh

|τ (1)(β1t/h)|2
∫

|β1t|≤Mh
t2ϕ2

K(t)dt

+ 1
2π

∫
|β1t|>Mh

t2ϕ2
K(t)

(
2cb|β1t/h|−b−1

c2|β1t/h|−2b/4

)2

dt

=O(h2−2b), under Condition (O4).

Hence, for ordinary smooth U , by (F.21), E{(IC(1,1)
j(g,β))2|Xj, Tj} = O(h3−2b). When U

is super smooth of order b, following (F.22) and using Defition 2 and Condition (S1),
∫

|F1,1(s)|2ds ≤ 1
2π

sup
|β1t|≤Mh

|τ (1)(β1t/h)|2
∫

|β1t|≤Mh
t2ϕ2

K(t)dt

+ 1
2π

∫
Mh<|β1t|≤|β1|

t2ϕ2
K(t)

d
(1)
1 |β1t/h|b

(1)
1 exp(−|β1t/h|b/d2)

d2
0|β1t/h|2b0 exp(−2|β1t/h|b/d2)


2

dt

= O
{
h2b3 exp(2|β1|bh−b/d2)

}
,

where b3 = (2b0 −b
(1)
1 )I(2b0 −b

(1)
1 < 0.5). Hence, for super smooth U , (F.21) indicates

E{(IC(1,1)
j )2|Xj = x} = O{h2b3+1 exp(2|β1|bh−b/d2)}.

Having the rates of the expectations in (E.18) derived above under the two types

of measurement error distributions, we are now ready to return to (F.18) and conclude

the rate of Var(Kn|X). In particular, (F.18) implies (F.4) if U is ordinary smooth,

and it implies (F.7) if U is super smooth.
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Up to this point, we have established the rates of E(Kn|X, T ) and Var(Kn|X, T ).

One will see later that the theme used above to establish these rates is repeatedly used

to derive the rates of E(Jn|X, T ), Var(Jn|X, T ), E(Ln|X, T ), and Var(Ln|X, T ).

Before moving forward to proving the next result, we shall summarize two patterns

learnt from Parts (I) and (II) that can be helpful for later parts of the proof. The

first pattern pertains to deriving the rate of the mean of Kn, or Jn, or Ln. As seen

in Part (I), the order of such mean mostly depends on E(IC(ℓ1,ℓ2)
j(g,β) W ℓ3

j |Xj, Tj) and

E(IS(ℓ1,ℓ2)
j(g,β) W ℓ3

j |Xj, Tj), for some nonnegative integers ℓ1, ℓ2 and ℓ3. These expecta-

tions are derived in the same way for ordinary smooth U and for super smooth U .

The second pattern relates to deriving the rate of the variance of Kn, or Jn, or Ln.

Such rate mainly depends on E{(IC(ℓ1,ℓ2)
j(g,β) )2W ℓ3

j |Xj, Tj) and E{(IS(ℓ1,ℓ2)
j(g,β) )2W ℓ3

j |Xj, Tj),

for some nonnegative integers ℓ1, ℓ2 and ℓ3. Moreover, raising the power ℓ3 from

zero does not affect the rate, hence one may focus on E{(IC(ℓ1,ℓ2)
j(g,β) )2|Xj, Tj) and

E{(IS(ℓ1,ℓ2)
j(g,β) )2|Xj, Tj). As seen in Part (II), each of these expectations is bounded from

above by Bfh
∫

|Fℓ1,ℓ2(s)|2ds. Discussions of the rate of
∫

|Fℓ1,ℓ2(s)|2ds need to be car-

ried out separately for ordinary smooth U and super smooth U . This rate mostly

relies on ℓ2, and the rate is derived under the assumption that
∫

t2ℓ1ϕ2
K(t)dt < ∞,

besides other assumptions. If U is ordinary smooth, for

ℓ2 < ℓ′
2,
∫

|Fℓ′
1,ℓ′

2
(s)|2ds/

∫
|Fℓ1,ℓ2(s)|2ds = o(1), where ℓ1 and ℓ′

1 can be the same or

different. If U is super smooth, the comparison between the rate of
∫

|Fℓ1,ℓ2(s)|2ds

and that of
∫

|Fℓ′
1,ℓ′

2
(s)|2ds is less clear-cut, and requires more careful inspection.

Part (III): Show (F.2).
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By (D.8), taylor expansion of Jn yields

Jn

= − 1
nh3

n∑
j=1

−IC(2,0)
j(g,β)

A1 C1

CT
1 D1

+ IS(2,1)
j(g,β)

A2 C2

CT
2 D2

+ IC(2,2)
j(g,β)

A3 C3

CT
3 D3




− 1
nh3

n∑
j=1

IS(3,0)
j(g,β)

A1 C1

CT
1 D1

+ IC(3,1)
j(g,β)

A2 C2

CT
2 D2

− IS(3,2)
j(g,β)

A3 C3

CT
3 D3


h−1Rj

− 1
nh3

n∑
j=1

IC(4,0)
η∗

j

A1 C1

CT
1 D1

− IS(4,1)
η∗

j

A2 C2

CT
2 D2

− IC(4,2)
η∗

j

A3 C3

CT
3 D3


h−2R2

j

+ op(1), (F.23)

where η∗
j lying between

Y − g(Tj) − W̃ T
j β

h
and

Y − B̃T
j γ̂CK − W̃ T

j β̂CK

h
. By (F.23),

E (Jn|X, T )

= − 1
nh3

n∑
j=1

−E
(
IC(2,0)

j(g,β)|Xj, Tj

) A1 C1

CT
1 D1

+ E
(
IS(2,1)

j(g,β)|Xj, Tj

) A2 C2

CT
2 D2



+E
(
IC(2,2)

j(g,β)|Xj, Tj

) A3 C3

CT
3 D3




− 1
nh3

n∑
j=1

E
(
IS(3,0)

j(g,β)|Xj, Tj

) A1 C1

CT
1 D1

+ E
(
IC(3,1)

j(g,β)|Xj, Tj

) A2 C2

CT
2 D2



−E
(
IS(3,2)

j(g,β)|Xj, Tj

) A3 C3

CT
3 D3


h−1Rj

− 1
nh3

n∑
j=1

E
(

IC(4,0)
η∗

j
|Xj, Tj

)A1 C1

CT
1 D1

− E
(

IS(4,1)
η∗

j
|Xj, Tj

)A2 C2

CT
2 D2



−E
(

IC(4,2)
η∗

j
|Xj, Tj

)A3 C3

CT
3 D3


h−2R2

j , (F.24)

where Ai, Ci, Di, i = 1, 2, 3 are defined in (D.10).
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By (F.24), the first summand of E (Jn|X, T ) yields

− 1
nh3

n∑
j=1

E
(
IC(2,0)

j(g,β)|Xj, Tj

) A1 C1

CT
1 D1

+ E
(
IS(2,1)

j(g,β)|Xj, Tj

) A2 C2

CT
2 D2



−E
(
IC(2,2)

j(g,β)|Xj, Tj

) A3 C3

CT
3 D3


 = − 1

nh3

n∑
j=1

κ1,j,1 κ1,j,2

κT
1,j,2 κ1

1,j,3

 ,

where 

κ1,j,1 = −E
(

IC(2,0)
j(g,β)

∣∣∣Xj, Tj

)
A1,

κ1,j,2 = −E
(

IC(2,0)
j(g,β)

∣∣∣Xj, Tj

)
C1 + E

(
IS(2,1)

j(g,β)

∣∣∣Xj, Tj

)
C2

+ E
(

IC(2,2)
j(g,β)

∣∣∣Xj, Tj

)
C3,

κ1,j,3 = −E
(

IC(2,0)
j(g,β)

∣∣∣Xj, Tj

)
D1 + E

(
IS(2,1)

j(g,β)

∣∣∣Xj, Tj

)
D2

+ E
(

IC(2,2)
j(g,β)

∣∣∣Xj, Tj

)
D3.

(F.25)

By (F.16) and (F.17), one can show κ1,j,1 = −h3f (2)(0|Xj, Tj)B̃jB̃j{1 + op(1)} and

κ1,j,2 = −h3f (2)(0|Xj, Tj)B̃jX̃
T
j {1 + op(1)}. Then we focus on derive the rate of κ1,j,3.

Note that

κ1,j,3 = E

−IC(2,0)
j(g,β)

 1 Wj

Wj W 2
j


∣∣∣∣∣∣∣∣Xj, Tj

+ E

IS(2,1)
j(g,β)

0 1

1 2Wj


∣∣∣∣∣∣∣∣Xj, Tj



+E

IC(2,2)
j(g,β)

0 0

0 1


∣∣∣∣∣∣∣∣Xj, Tj



=

ηj,1 ηj,2

ηj,2 ηj,3

 , (F.26)

where

ηj,1 = −E
(

IC(2,0)
j(g,β)

∣∣∣Xj, Tj

)
,

ηj,2 = −E
(

IC(2,0)
j(g,β)

∣∣∣Xj, Tj

)
Xj − E

(
IC(2,0)

j(g,β)Uj

∣∣∣Xj, Tj

)
+ E

(
IS(2,1)

j(g,β)

∣∣∣Xj, Tj

)
,

ηj,3 = −E
(

IC(2,0)
j(g,β)W

2
j

∣∣∣Xj, Tj

)
+ 2E

(
IS(2,1)

j(g,β)Wj

∣∣∣Xj, Tj

)
+ E

(
IC(2,2)

j(g,β)

∣∣∣Xj, Tj

)
.

(F.27)
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To derive (F.26), in what follows, we first show that ηj,2 = ηj,1Xj. Then we focus on

deriving ηj,3 = ηj,1X
2
j .

By (F.27), ηj,2 contains two extra expectations besides the one defined as ηj,1. By

(F.17), these two expectations is equal to zero. Therefore, ηj,2 = ηj,1Xj.

Elaborating ηj,3 in (F.27) yields

ηj,3 = −E
{

IC(2,0)
j(g,β)U

2
j

∣∣∣Xj, Tj

}
+ 2E

{
IS(2,1)

j(g,β)Uj

∣∣∣Xj, Tj

}
+ E

{
IC(2,2)

j(g,β)

∣∣∣Xj

}
+

2
{
−E

(
IC(2,0)

j(g,β)Uj

∣∣∣Xj, Tj

)
+ E

(
IS(2,1)

j(g,β)

∣∣∣Xj, Tj

)}
+ ηj,1X

2
j

= −E
{

IC(2,0)
j(g,β)U

2
j

∣∣∣Xj, Tj

}
+ 2E

{
IS(2,1)

j(g,β)Uj

∣∣∣Xj, Tj

}
+ E

{
IC(2,2)

j(g,β)

∣∣∣Xj, Tj

}
+ ηj,1X

2
j ,

where, to reach the last step, we drop the part in the first step that reduces to zero

according to the preceding derived results in regard to ηj,2. As for the remaining

three expectations in front of ηj,1X
2
j above, we have

− E
{

IC(2,0)
j(g,β)U

2
j

∣∣∣Xj, Tj

}
+ 2E

{
IS(2,1)

j(g,β)Uj

∣∣∣Xj, Tj

}
+ E

{
IC(2,2)

j(g,β)

∣∣∣Xj, Tj

}
(F.28)

= − 1
2π

∫
f(ϵ|Xj, Tj)

∫
t2ϕK(t)τ(β1t/h)

∫
u2 cos

(
ϵ − β1u

h
t

)
fU(u)du dt dϵ+

2 · 1
2π

∫
f(ϵ|Xj, Tj)

∫
t2ϕK(t)τ (1)(β1t/h)

∫
u sin

(
ϵ − β1u

h
t

)
fU(u)du dt dϵ+

1
2π

∫
f(ϵ|Xj, Tj)

∫
t2ϕK(t)τ (2)(β1t/h)

∫
cos

(
ϵ − β1u

h
t

)
fU(u)du dt dϵ

= 1
2π

∫
f(ϵ|Xj, Tj)

∫
t2ϕK(t)τ(β1t/h)ϕ(2)

U (−β1t/h) cos(ϵt/h)dt dϵ+

2 · 1
2π

∫
f(ϵ|Xj, Tj)

∫
t2ϕK(t)τ (1)(β1t/h) · (−1) · ϕ

(1)
U (−β1t/h) cos(ϵt/h)dt dϵ+

1
2π

∫
f(ϵ|Xj, Tj)

∫
t2ϕK(t)τ (2)(β1t/h)ϕU(−β1t/h) cos(ϵt/h)dt dϵ,

= 1
2π

∫
f(ϵ|Xj, Tj)

∫
t2ϕK(t)

{
τ(β1t/h)ϕ(2)

U (β1t/h) + 2τ (1)(β1t/h)ϕ(1)
U (β1t/h)+

τ (2)(β1t/h)ϕU(β1t/h)
}

cos(ϵt/h)dt dϵ,

in the last step of which we use the assumption that ϕU(·) is even, thus ϕ
(1)
U (·) is odd

and ϕ
(2)
U (·) is even. By Lemma C.3, the part inside the curly brackets in the last step
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reduces to zero. Hence, ηj,3 = ηj,1X
2
j . To this end, by (F.16), one can conclude that

ηj,1 = −h3f (2)(0|Xj){1 + op(1)},

ηj,2 = −h3f (2)(0|Xj)Xj{1 + op(1)},

ηj,3 = −h3f (2)(0|Xj)X2
j {1 + op(1)}.

(F.29)

Using (F.29) in (F.26) leads to κ1,j,3 = −h3f (2)(0|Xj, Tj)X̃jX̃j{1 + op(1)}. By

κ1,j,i, i = 1, 2, 3, the first summand of E (Jn|X, T ) is equal to

−h3f (2)(0|Xj, Tj)Z̃jZ̃j{1 + op(1)}, where Zj = (BT
j , XT

j ).

Similar as the above proof, by the assumption (C∗5), one can show the rate of third

summand of E (Jn|X, T ) is equal to the rate of first summand of E (Jn|X, T ). Then,

we only focus on deriving the rate of the second summand of E{Jn|X, T }.

By (F.24), the second summand of E{Jn|X, T } yields

− 1
nh3

n∑
j=1

E
(
IS(3,0)

j(g,β)|Xj, Tj

) A1 C1

CT
1 D1

+ E
(
IC(3,1)

j(g,β)|Xj, Tj

) A2 C2

CT
2 D2



−E
(
IS(3,2)

j(g,β)|Xj, Tj

) A3 C3

CT
3 D3


 = − 1

nh3

n∑
j=1

κ2,j,1 κ2,j,2

κT
2,j,2 κ2,j,3

 ,

where 

κ2,j,1 = E
(

IS(3,0)
j(g,β)

∣∣∣Xj, Tj

)
A1,

κ2,j,2 = E
(

IS(3,0)
j(g,β)

∣∣∣Xj, Tj

)
C1 + E

(
IC(3,1)

j(g,β)

∣∣∣Xj, Tj

)
C2

− E
(

IS(3,2)
j(g,β)

∣∣∣Xj, Tj

)
C3,

κ2,j,3 = E
(

IS(3,0)
j(g,β)

∣∣∣Xj, Tj

)
D1 + E

(
IC(3,1)

j(g,β)

∣∣∣Xj, Tj

)
D2

− E
(

IS(3,2)
j(g,β)

∣∣∣Xj, Tj

)
D3.

(F.30)
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First, in κ2,j,1,

E
(

IS(3,0)
j(g,β)

∣∣∣Xj, Tj

)
(F.31)

= 1
2π

∫
f(ϵ|Xj, Tj)

∫
t3ϕK(t)τ(β1t/h)

∫
sin

(
ϵ − β1u

h
t

)
fU(u) du dt dϵ

= 1
2π

∫
f(ϵ|Xj, Tj)

∫
t3ϕK(t)τ(β1t/h)ϕU(−β1t/h) sin(ϵt/h) dt dϵ, by Lemma C.1,

= − 1
2π

∫
f(ϵ|Xj, Tj)

∫
t3ϕK(t) sin(ϵt/h) dt dϵ, since τ(s) = −1/ϕU(s),

= − h · 1
2π

∫
f(hs|Xj, Tj)

∫
t3ϕK(t) sin(st) dt ds

= − h · 1
2π

∫ {
f(0|Xj, Tj) + f (2)(0|Xj)h2s2/2

+f (3)(s∗|Xj, Tj)h3s3/6
} ∫

t3ϕK(t) sin(st) dt ds,

= − h4

6 · 1
2π

∫
f (3)(s∗|Xj, Tj)s3

∫
t3ϕK(t) sin(st) dt ds,

where we use the third-order Taylor expansion of f(sh|Xj) around zero in the second

to the last step, with s∗ lying between 0 and sh; then we use identities in Lemma

C.2 to simplify the integrals and keep the only part that is not necessarily equal to

zero. Assuming f (3)(·|Xj) bounded and using Lemma C.2, the last expression above

suggests that E(IS(3,0)
j |Xj) is of order O(h4). Hence, κ2,j,1 is of order O(h4).

By the definition of IS(3,0)
j(g,β) and IC(3,1)

j(g,β), the two terms are involved in κ2,j,2 by,

E
(

UjIS(3,0)
j(g,β)

∣∣∣Xj, Tj

)
+ E

(
IC(3,1)

j(g,β)

∣∣∣Xj, Tj

)
(F.32)

= 1
2π

∫
f(ϵ|Xj, Tj)

∫
t3ϕK(t)τ(β1t/h)

∫
u sin

(
ϵ − β1u

h
t

)
fU(u) du dt dϵ+

1
2π

∫
f(ϵ|Xj, Tj)

∫
t3ϕK(t)τ (1)(β1t/h)

∫
cos

(
ϵ − β1u

h
t

)
fU(u) du dt dϵ

= 1
2π

∫
f(ϵ|Xj, Tj)

∫
t3ϕK(t)τ(β1t/h)(−1)ϕ(1)

U (−β1t/h) cos(ϵt/h) dt dϵ+
1

2π

∫
f(ϵ|Xj, Tj)

∫
t3ϕK(t)τ (1)(β1t/h)ϕU(−β1t/h) cos(ϵt/h) dt dϵ,

= 1
2π

∫
f(ϵ|Xj, Tj)

∫
t3ϕK(t)

{
τ(β1t/h)ϕ(1)

U (β1t/h)

+τ (1)(β1t/h)ϕU(−β1t/h)
}

cos(ϵt/h) dt dϵ

=0,
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where the last step is reached because the terms inside the curly brackets in the

second-to-the-last step is equal to zero by Lemma C.3. For κ2,j,3, we have the following

elaboration by the definitions of IS(3,0)
j(g,β), IC(3,1)

j(g,β), and IS(3,2)
j(g,β),

E
(

U2
j IS(3,0)

j(g,β)

∣∣∣Xj, Tj

)
+ 2E

(
UjIC(3,1)

j(g,β)

∣∣∣Xj, Tj

)
− E

(
IS(3,2)

j(g,β)

∣∣∣Xj, Tj

)
(F.33)

= 1
2π

∫
f(ϵ|Xj, Tj)

∫
t3ϕK(t)τ(β1t/h)

∫
u2 sin

(
ϵ − β1u

h
t

)
fU(u) du dt dϵ+

2 · 1
2π

∫
f(ϵ|Xj, Tj)

∫
t3ϕK(t)τ (1)(β1t/h)

∫
u cos

(
ϵ − β1u

h
t

)
fU(u) du dt dϵ−

1
2π

∫
f(ϵ|Xj, Tj)

∫
t3ϕK(t)τ (2)(β1t/h)

∫
sin

(
ϵ − β1u

h
t

)
fU(u) du dt dϵ

= 1
2π

∫
f(ϵ|Xj, Tj)

∫
t3ϕK(t)τ(β1t/h) · (−1) · ϕ

(2)
U (−β1t/h) sin(ϵt/h) dt dϵ+

2 · 1
2π

∫
f(ϵ|Xj, Tj)

∫
t3ϕK(t)τ (1)(β1t/h)ϕ(1)

U (−β1t/h) sin(ϵt/h) dt dϵ−
1

2π

∫
f(ϵ|Xj, Tj)

∫
t3ϕK(t)τ (2)(β1t/h)ϕU(−β1t/h) sin(ϵt/h) dt dϵ,

= − 1
2π

∫
f(ϵ|Xj, Tj)

∫
t3ϕK(t) sin(ϵt/h)·{

τ(β1t/h)ϕ(2)
U (β1t/h) + 2τ (1)(β1t/h)ϕ(1)

U (β1t/h) + τ (2)(β1t/h)ϕU(β1t/h)
}

dt dϵ

=0, by Lemma C.3.

Therefore, combine κ2,j,i, i = 1, 2, 3, the second summand of Jn in (D.8) has expec-

tation of order O(h4).

By assumption (C∗5) and the rate of the second summand of E (Jn|X, T ), one can

have the rate of the second term in (F.24) is op(1). Similarly, the rate of the third sum-

mand of E (Jn|X, T ) is also equal to op(1). In other words, the first term dominates

the other two term in (F.24), which leads to (F.2).

Part (IV): Show (F.5) and (F.8).

By (D.8), the order of Var(Jn) is determined by the first term and the order of the

first term is dominated by the rates of E{(IC(2,0)
j(g,β))2W k

j |Xj, Tj} for k = 0, 1, 2, 3, 4, the

rates of E{(IS(2,1)
j(g,β))2W k

j |Xj, Tj} for k = 0, 1, 2, and that of E{(IC(2,2)
j )2|Xj, Tj}. It

can be shown that, if E(U4) < ∞, E{(IC(2,0)
j(g,β))2W k

j |Xj, Tj}, for k = 1, 2, 3, 4, have the

same rate as that of E{(IC(2,0)
j(g,β))2|Xj, Tj}, and E{(IS(2,1)

j(g,β))2W k
j |Xj, Tj}, for k = 1, 2,
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have the same rate as that of E{(IS(2,1)
j(g,β))2|Xj, Tj}. In what follows, we focus on deriv-

ing the rates of E{(IC(2,0)
j(g,β))2|Xj, Tj}, E{(IS(2,1)

j(g,β))2|Xj, Tj}, and E{(IC(2,2)
j )2|Xj, Tj}.

We first find an upper bound for each of these three expectations as follows,

E
{(

IC(2,0)
j(g,β)

)2
∣∣∣∣Xj, Tj

}
=
∫

fU(u)
∫ {

1
2π

∫
t2 cos

(
ϵ − β1u

h
t

)
ϕK(t)τ(β1h/t)dt

}2

f(ϵ|Xj, Tj)dϵ du

= h
∫

fU(u)
∫

| − F2,0(s)|2f(β1u + sh|Xj, Tj)ds du

≤ Bfh
∫

|F2,0(s)|2ds.

Similarly,

E
{(

IS(2,1)
j(g,β)

)2
∣∣∣∣Xj, Tj

}
≤ Bfh

∫
|F2,1(s)|2ds,

E
{(

IC(2,2)
j(g,β)

)2
∣∣∣∣Xj, Tj

}
≤ Bfh

∫
|F2,2(s)|2ds.

When U is ordinary smooth, recalling the pattern stated at the end of Part (II),∫
|F2,0(s)|2ds dominates

∫
|F2,1(s)|2ds and

∫
|F2,2(s)|2ds, and

∫
|F2,0(s)|2ds is of the

same order as
∫

|F1,0(s)|2ds, which we looked into in Part (II). Using the results

regarding
∫

|F1,0(s)|2ds, we have
∫

|F2,0(s)|2ds = O(h−2b) if U is ordinary smooth,

and thus E{(IC(2,0)
j(g,β))2|Xj, Tj} = O(h1−2b), which dominates E{(IS(2,1)

j )2|Xj, Tj}, and

E{(IC(2,2)
j(g,β))2|Xj, Tj}. These rates lead to (F.5).

If U is super smooth, under Conditions S, similar to the proof in Part (II), one

can show that

E{(IC(2,0)
j(g,β))

2|Xj, Tj} = O{h1+2b2 exp(2|β1|bh−b/d2)},

E{(IS(2,1)
j(g,β))

2|Xj, Tj} = O{h1+2b3 exp(2|β1|bh−b/d2)},

E{(IC(2,2)
j(g,β))

2|Xj, Tj} = O{h1+2b4 exp(2|β1|bh−b/d2)},

where b2 = b0I(b0 < 0.5), b3 = (2b0 − b
(1)
1 )I(2b0 − b

(1)
1 < 0.5), and b4 = min{(2b0 −

b
(2)
1 )I(2b0 − b

(2)
1 < 0.5), (3b0 − 2b

(1)
1 )I(3b0 − 2b

(1)
1 < 0.5)}. Using these rates one can

establish (F.8).
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Part (V): Show (F.3).

Because ∥θ∗ − θ∥ ≤ cδn, under conditions that guarantee boundedness of IS(4,ℓ2)
j(γ,β)

and IC(4,ℓ2)
j(γ,β), for ℓ2 = 0, 1, 2, 3, 4, Ln evaluated at θ∗ and Ln evaluated at θ are of

the same order. Hence, we focus on studying Ln evaluated at θT = (γT , βT ) in the

sequel.

By taylor expansion, (D.9) yields

Ln = 1
nh4

n∑
j=1

IS(3,0)
j(g,β)

A1B̃j + C1W̃j

CT
1 B̃j + D1W̃j

+ IC(3,1)
j(g,β)

C1ẽ1 + A2B̃j + C2W̃j

D1ẽ1 + CT
2 B̃j + D2W̃j



− IS(3,2)
j(g,β)

C2ẽ1 + A3B̃j + C3W̃j

D2ẽ1 + CT
3 B̃j + D3W̃j

− IC(3,3)
j(g,β)

C3ẽ1

D3ẽ1




+ 1
nh4

n∑
j=1

IC(4,0)
j(g,β)

A1B̃j + C1W̃j

CT
1 B̃j + D1W̃j

− IS(4,1)
j(g,β)

C1ẽ1 + A2B̃j + C2W̃j

D1ẽ1 + CT
2 B̃j + D2W̃j



− IC(4,2)
j(g,β)

C2ẽ1 + A3B̃j + C3W̃j

D2ẽ1 + CT
3 B̃j + D3W̃j

+ IS(4,3)
j(g,β)

C3ẽ1

D3ẽ1


h−1Rj

− 1
2nh4

n∑
j=1

IS(5,0)
η∗

j

A1B̃j + C1W̃j

CT
1 B̃j + D1W̃j

+ IC(5,1)
η∗

j

C1ẽ1 + A2B̃j + C2W̃j

D1ẽ1 + CT
2 B̃j + D2W̃j



− IS(5,2)
η∗

j

C2ẽ1 + A3B̃j + C3W̃j

D2ẽ1 + CT
3 B̃j + D3W̃j

− IC(5,3)
η∗

j

C3ẽ1

D3ẽ1


h−2R2

j

By (F.31), (F.32) and (F.33), similar as proof in Part(I) and Part(III), the order of the

first summand of expectation of Ln and the order the third summand of expectation

of Ln is equal to Op(h4). By (F.16) and (F.28), the order of the second summand of

expectation of Ln is equal to Op(h3). Based on the assumption (C∗5), the order of

expectation of Ln is Op(1), which leads to (F.3).

Part (VI): Show (F.6) and (F.9).

By (D.9), the order of Var(Ln) is determined by the orders of E{(IS(3,0)
j(g,β))2|Xj, Tj},

E{(IC(3,1)
j(g,β))2
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|Xj, Tj}, E{(IS(3,2)
j(g,β))2|Xj, Tj}, and E{(IC(3,3)

j )2|Xj, Tj}. Following similar arguments

as those in Parts (II) and (IV), one can show that these expectations are bounded from

above by Bfh
∫

|F3,ℓ2 |2ds, for ℓ2 = 0, 1, 2, 3, respectively. If U is ordinary smooth,∫
|F3,0|2ds dominates the other three according to the patterns pointed out at the end

of Part (II), which of the same order as
∫

|F1,0|2ds derived there. Therefore, using

results from Part (II), we have the order of Var(Ln) besing Op{1/(nh7+2b)} if U is

ordinary smooth. This proves (F.6). If U is super smooth, one can show that

E{(IS(3,0)
j(g,β))

2|Xj, Tj} = O{h1+2b2 exp(2|β1|bh−b/d2)},

E{(IC(3,1)
j(g,β))

2|Xj, Tj} = O{h1+2b3 exp(2|β1|bh−b/d2)},

E{(IS(3,2)
j(g,β))

2|Xj, Tj} = O{h1+2b4 exp(2|β1|bh−b/d2)},

E{(IC(3,3)
j(g,β))

2|Xj, Tj} = O{h1+2b5 exp(2|β1|bh−b/d2)},

where b2 = b0I(b0 < 0.5), b3 = (2b0 − b
(1)
1 )I(2b0 − b

(1)
1 < 0.5), b4 = min{(2b0 −

b
(2)
1 )I(2b0 − b

(2)
1 < 0.5), (3b0 − 2b

(1)
1 )I(3b0 − 2b

(1)
1 < 0.5)}, and b5 = min{(2b0 −

b
(3)
1 )I(2b0−b

(3)
1 < 0.5), (3b0−b

(1)
1 −b

(2)
1 )I(3b0−b

(1)
1 −b

(2)
1 < 0.5), (4b0−b

(1)
1 −2b

(2)
1 )I(4b0−

b
(1)
1 − 2b

(2)
1 < 0.5)}. Putting these rates together gives (F.9).
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Appendix G

Computer codes for analyzing the dietary data

using the Monte Carlo corrected score method

The main MATLAB code for carrying out linear mode regression analysis of the di-

etary data using the Monte Carlo corrected score method is given first. The dietary

data is saved in wishers.csv. The main code calls three functions, named CV_1,

CV_2, and MCCS. The MCCS function calls another function named phi_mcb.

These four functions are given after the main code next.

(I) Main code for applying the MCCS method:

%****************************************************************%

% %

% MATLAB code to analyze dietary data by using Monte Carlo %

% Corrected Score method (MCCS). %

% %

%****************************************************************%

clear;clc;

%****************************************************************%

% Set path to read the dietary data

% Specify your path to read the data

%****************************************************************%

addpath(’Your Path to Load Data’)
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%****************************************************************%

% Part I: Data cleaning

%****************************************************************%

% Data claim:

% y_up: FFQ intake measured as the percent calories from fat,

% Response Variable Y.

% w_n1: average of six recalls from each subject as a surrogate

% of this subject’s long-term intake, covariate W.

% fri_n,i=1,...,6: six 24-hour food recalls on randomly selected days.

% Read data from ’wishreg.csv’

data = readtable(’wishreg.csv’);

s_ize = size(data);

% Scale and center all variables

fr1_n = (data.fr1 - mean(data.fr1)) / std(data.fr1);

fr2_n = (data.fr2 - mean(data.fr2)) / std(data.fr2);

fr3_n = (data.fr3 - mean(data.fr3)) / std(data.fr3);

fr4_n = (data.fr4 - mean(data.fr4)) / std(data.fr4);

fr5_n = (data.fr5 - mean(data.fr5)) / std(data.fr5);

fr6_n = (data.fr6 - mean(data.fr6)) / std(data.fr6);

y=data.ffq;

y_up = (y-mean(y)) / std(y);

% Obtain contaminated covariate W

w_n1 = ( fr1_n + fr2_n + fr3_n + fr4_n + fr5_n + fr6_n ) / 6 ;

%****************************************************************%

170



www.manaraa.com

% Part II: Estimate the variance of measurement errros

%****************************************************************%

fr_t = cat(2,fr1_n,fr2_n,fr3_n,fr4_n,fr5_n,fr6_n);

gama_u2 = sum( sum((fr_t - repmat(w_n1,[1,6]) ).^2,2)) / 5 / s_ize(1);

sigma_u2 = gama_u2 / 6;

%****************************************************************%

% Part III: Implement MCCS method

%****************************************************************%

x_total = w_n1’;

y_total = y_up’;

% B and options are parameters in CV_1 and CV_2 function.

B=10;

options = optimset(’Display’,’off’);

x_con = x_total;

y = y_total;

% Bandwidth Selection using SIMEX method,

% (-0.2672,0.3627) is naive estimate as the starting point

parms = [-0.2672;0.3627];

f1 = @(Lambda)CV_1(parms, x_con, y,Lambda, B, s_ize(1) ,options );

f2 = @(Lambda)CV_2(parms, x_con, y,Lambda, B, s_ize(1) ,options );

h_1 = fminbnd(f1,0.6,1.6);

h_2 = fminbnd(f2,0.6,1.7);

h = h_1^2/h_2;
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% Obtain final estimates from MCCS method

if isnan(h)

beta = NaN(1,2);

else

u_b = normrnd(0,0.3390,1000,s_ize(1));

f = @(beta)MCCS(beta,h,x_con,y,u_b,s_ize(1));

beta = fsolve(f,[-0.2672;0.3627],options);

end

table(beta(1),beta(2),’VariableNames’,{’beta_0’,’beta_1’})

(II) Function CV_1:

****************************************************************%

% CV_1 function computes the value of h_{1} in SM_2 step

%****************************************************************%

% Arguments:

% parms = starting points of intercept and slope paramters

% Lambda = Bandwidth

% x_cont = Contaminated covariate W

% y_o = Response variable

% B = the number of further contaminated covariate data in Section 3.3

% n_o = sample size

% options

%= control whether or not to show results from "fslove" function

% Outputs:

% out: MSE

function [ out ] = CV_1( parms, x_cont, y_o,Lambda, B,n_o,options)
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beta_1 = zeros(B,2);

beta_2 = zeros(B,2);

for i=1:B

u_b = normrnd(0,0.3390,1000,n_o);

u_b1 = normrnd(0,0.3390,1000,n_o);

w_st = x_cont + normrnd(0,0.3390,1,n_o);

f_1 = @(beta)MCCS(beta,Lambda,x_cont,y_o,u_b,n_o);

beta_1(i,:) = fsolve(f_1,parms,options);

f_2 = @(beta)MCCS(beta,Lambda,w_st,y_o,u_b1,n_o);

beta_2(i,:) = fsolve(f_2,parms,options);

end

beta_f = beta_2-beta_1;

beta_f( (beta_1(:,1)==2 & beta_1(:,2)==5)

|(beta_2(:,1)==2 & beta_2(:,2)==5),:)=[];

dim_beta = size(beta_f);

if dim_beta(1) <= 1

d_st_1 = NaN(1);

else

S_star = cov(beta_f);

d_st_1 = diag((beta_f) / S_star * (beta_f)’);

end

out = mean(d_st_1);

end

(III) Function CV_2:
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%****************************************************************%

% CV_2 function computes the value of h_{2} in SM_4 step

%****************************************************************%

% Arguments:

% parms = starting points of intercept and slope paramters

% Lambda = Bandwidth

% x_cont = Contaminated covariate W

% y_o = Response variable

% B = the number of further contaminated covariate data in Section 3.3

% n_o = sample size

% options

% = control whether or not to show results from "fslove" function

% Outputs:

% out: MSE

function [ out ] = CV_2( parms, x_cont, y_o,Lambda, B, n_o, options )

beta_2 = zeros(B,2);

beta_3 = zeros(B,2);

for i=1:B

u_b = normrnd(0,0.3390,1000,n_o);

u_b1 = normrnd(0,0.3390,1000,n_o);

w_st = x_cont + normrnd(0,0.3390,1,n_o);

w_st2 = w_st + normrnd(0,0.3390,1,n_o);

f_1 = @(beta)MCCS(beta,Lambda,w_st,y_o,u_b,n_o);

beta_2(i,:) = fsolve(f_1,parms,options);

f_2 = @(beta)MCCS(beta,Lambda,w_st2,y_o,u_b1,n_o);
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beta_3(i,:) = fsolve(f_2,parms,options);

end

beta_f = beta_3-beta_2;

beta_f( (beta_2(:,1)==2 & beta_2(:,2)==5)

| (beta_3(:,1)==2 & beta_3(:,2)==5) , :)=[];

dim_beta = size(beta_f);

if dim_beta(1) <= 1

d_st_2 = NaN(1);

else

S_star2 = cov(beta_f);

d_st_2 = diag((beta_f) / S_star2 * (beta_f)’);

end

out = mean(d_st_2);

end

(IV) MCCS function:

%****************************************************************%

% MCCS function computes the sum of \Psi_{MC,B} in MC_4 step

%****************************************************************%

% Arguments:

% beta = (\beta_{0},\beta_{1}) intercept and slope paramters

% Lambda = Bandwidth

% x_cont = Contaminated covariate W

% y_o = Response variable

% u_b = Indepedent random errors generated from Normal distribution

% n_o = sample size
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% Outputs:

% out: sum of \Psi_{MC,B} in MC_4 step

function [ out ] = MCCS( beta,Lambda, x_cont, y_o,u_b,n_o)

f = zeros(n_o,2);

for i=1:n_o

% phi_mcb function is used to compute \Psi_{MC,B} in MC_3 Step

f(i,:) = phi_mcb(beta,Lambda,x_cont(i),y_o(i),u_b(:,i));

end

out = sum(f,1);

end

(V) phi_mcb function:

%****************************************************************%

% phi_mcb function computes the value of \Psi_{MC,B} in MC_3 step

%****************************************************************%

% Arguments:

% beta = (\beta_{0},\beta_{1}) intercept and slope paramters

% Lambda = Bandwidth

% x_cont = Contaminated covariate W

% y_o = Response variable

% u_b = Indepedent random errors generated from Normal distribution

% Outputs:

% out: the value of \Psi_{MC,B} in MC_3 step

function [out]=phi_mcb(beta,Lambda,x_cont,y_o,u_b)

w_con = complex(x_cont,u_b);
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I_one = ones(1000,1);

x_new = [I_one,w_con];

const = 1/sqrt(2*pi)*exp( - ( y_o - x_new*beta).^2/2/Lambda^2 ).*

(( y_o - x_new*beta)/Lambda^2 );

const_1 = [const,const];

re = real(x_new.*const_1);

out = mean(re,1);

end

Appendix E: Computer codes for analyzing the dietary data using the

corrected kernel method

The main R code for carrying out linear mode regression analysis of the dietary

data using the corrected kernel method assuming Laplace measurement error is given

first. The main code calls FFT.cpp that is given following the main code.

(I) The main R code for implementing the corrected kernel method:

########################################################

# R Code to analyze dietary data using the corrected kernel method

# assuming Laplace measurement error.

########################################################

############################################################

# Set the path to read the dietary data

# Specify your path to read the data and ’FFT.cpp’ file

############################################################

setwd("Your Path to Load the Data")
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############################################################

# required packages

###########################################################

library(Rcpp)

library(RcppArmadillo)

library(rmutil)

library(nloptr)

##########################################################

# Rcpp is used to compute the value of objective function in mode

# regression for a given beta

########################################################

sourceCpp(’FFT.cpp’)

#########################################################

# Arguments in FFT_AP function:

# input - m input values of K^{*}(t), m = 2^16 in our simulation.

# mconst -

# positive and negative sign corresponding to m input values in FFT.

# beta - the interval of t for the m input values of K^{*}(t).

# m - the number of input values of K^{*}(t).

########################################################

m = 2^16

beta = sqrt((2*pi)/m)

input = seq(-m*beta/2, m*beta/2-beta, by=beta)
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mconst = (-1)^(0:(m-1))

########################################################

# Part I: Bandwidth selection using SIMEX method.

########################################################

# CV_1 function

#computes the value of h_{1} in SM_2 step in the manuscript.

# Arguments:

# start = staring point of estimates

# x_con = contaminated covariate W

# y = response variable

# B = the number of estimators

# n_o = sample size

# Outputs:

# M1/M2: MSE

cV1 <- function(start, lambda, x_con, y, B,n_o)

{

h <- lambda

beta_1 <- beta_2 <- matrix(0,B,2)

d_st_1 <- array(0,B)

beta_11 <- bobyqa(start,fn=FFT_AP,x_cont=x_con,y_o=y,

input=input, Lambda=h,

beta=beta, mconst=mconst)$par

for (i in 1:B)

{

w_st <- x_con + rlaplace(n_o,0,0.3390/sqrt(2))

beta_1[i,] <- beta_11
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beta_2[i,] <- bobyqa(start,fn=FFT_AP,x_cont=w_st,y_o=y,

input=input,Lambda=h,

beta=beta, mconst=mconst)$par

}

S_star <- cov(beta_2-beta_1)

d_st_1 <- diag( (beta_2-beta_1)\%*\%solve(S_star)

\%*\%t(beta_2-beta_1) )

M1 <- mean(d_st_1)

return(M1)

}

# CV_2 function computes the value of h_{2} in SM_4 step

# Arguments:

# start = staring point of estimtors

# x_con = contaminated covariate W

# y = response varialbe

# B = the number of estimators

# n_o = sample size

# Outputs:

# M1/M2: MSE

cV2 <- function(start, lambda, x_con, y, B, n_o)

{

h <- lambda

beta_2 <- beta_3 <- matrix(0,B,2)
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d_st_2 <- array(0,B)

for (i in 1:B)

{

w_st <- x_con + rlaplace(n_o,0,0.3390/sqrt(2))

w_st2 <- w_st + rlaplace(n_o,0,0.3390/sqrt(2))

beta_2[i,] <- bobyqa(start,fn=FFT_AP,x_cont=w_st,y_o=y,

input=input, Lambda=h,

beta=beta, mconst=mconst)$par

beta_3[i,] <- bobyqa(start,fn=FFT_AP,x_cont=w_st2,y_o=y,

input=input, Lambda=h,

beta=beta, mconst=mconst)$par

}

S_star2 <- cov(beta_3-beta_2)

d_st_2 <- diag( (beta_3-beta_2)\%*\%solve(S_star2)

\%*\%t(beta_3-beta_2) )

M2 <- mean(d_st_2)

return(M2)

}

#####################################################

# Part II: Data cleaning

#####################################################

# Data claim:

# y_total: FFQ intake measured as the percent calories from fat,

# Response Variable Y.
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# x_total: average of six recalls from each subject as

# a surrogate of this subject’s long-term intake, covariate W.

# (fr1_n, fr2_n, fr3_n, fr4_n, fr5_n, fr6_n):

# six 24-hour food recalls on randomly selected days.

# read data from ’wishreg.csv’

data = read.csv(’wishreg.csv’, header=TRUE,sep=",")

n = dim(data)[1]

# scale and center all variables

y_total = (data$ffq-mean(data$ffq)) / sqrt(var(data$ffq))

fr1_n = (data$fr1 - mean(data$fr1)) / sqrt(var(data$fr1));

fr2_n = (data$fr2 - mean(data$fr2)) / sqrt(var(data$fr2));

fr3_n = (data$fr3 - mean(data$fr3)) / sqrt(var(data$fr3));

fr4_n = (data$fr4 - mean(data$fr4)) / sqrt(var(data$fr4));

fr5_n = (data$fr5 - mean(data$fr5)) / sqrt(var(data$fr5));

fr6_n = (data$fr6 - mean(data$fr6)) / sqrt(var(data$fr6));

# obtain contaminated covariate W

x_total = ( fr1_n + fr2_n + fr3_n + fr4_n + fr5_n + fr6_n ) / 6 ;

##############################################

# Part III: Implement the corrected kernel method assuming

# Laplace measurement error

#############################################

# Bandwidth selection using SIMEX method,

# (-0.2672, 0.3627) is the naive estimator,

# used as starting point
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y <- y_total

x_con <- x_total

h_1 <- optimize(cV1,c(0.5,1.5),start=c(-0.2672,0.3627),

x_con = x_con, y = y,

B=10, n)$minimum

h_2 <- optimize(cV2,c(0.5,1.7),start=c(-0.2672,0.3627),

x_con = x_con, y = y,

B=10, n)$minimum

h_select_n <- h_1^2/h_2

# obtain final estimates

beta_e <- bobyqa(c(-0.2672,0.3627),fn=FFT_AP,x_cont=x_con,y_o=y,

input=input, Lambda=h_select_n,

beta=beta, mconst=mconst)$par

# Compute estimates \beta_{0} and \beta_{1}

beta_e <- matrix(beta_e,1,2)

colnames(beta_e) = c("beta_0","beta_1")

rownames(beta_e) = c("")

round(beta_e,4)

(II) FFT.cpp:

//*******************************************************//

// This document includes two functions:

// 1) double func(double x, double beta1, double Lambda)

// is used to calculate \phi_{K} / \phi_{U}

// in the corrected kernel K^{*}.

// 2) double FFT_AP is used to compute
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// the objective function in the corrected kernel method

// using fast Fourier transformation.

//******************************************************//

//*******************************************************//

//required library

//******************************************************//

#include <RcppArmadillo.h>

#include <Rcpp.h>

// [[Rcpp::depends(RcppArmadillo)]]

using namespace arma;

using namespace Rcpp;

using namespace std;

//*****************************************************//

// func is used to compute \phi_{K}/\phi_{U}

// in the corrected kenrel K^{*}

// Arguments:

// beta1 - slope parameter in mode regression

// Lambda - bandwidth in the corrected kernel method

//****************************************************//

// [[Rcpp::export]]

double func(double x, double beta1, double Lambda)

{

if ( x <=1 && x >=-1 ) {

return pow(1-pow(x,2),3) / (2*pow(Lambda,2) /

184



www.manaraa.com

( 2*pow(Lambda,2) + pow(0.3390,2)*pow(beta1,2)*pow(x,2) ));

}else{

return 0;

}

}

//***********************************************//

// FFT_AP computes the objective function in the corrected

// kernel method using fast Fourier transformation (FFT).

// Arguments:

// parms - intercept and slope parameters in mode regression.

// x_cont - contaminated covariate W.

// y_o - response variable Y.

// Lambda - bandwidth in the corrected kernel method.

// input - m input values of K^{*}(t), m = 2^16 in the simulation.

// mconst - positive and negative sign corresponding to m

input values in FFT.

// beta - the interval of t for the m input values of K^{*}(t).

//*************************************************//

// [[Rcpp::export]]

double FFT_AP(NumericVector& parms, NumericVector& x_cont,

NumericVector& y_o, const NumericVector& input, double Lambda,

double beta, const NumericVector& mconst)

{

int m = input.size();

NumericVector FKoutput(m);

NumericVector re = (y_o-parms[0]-parms[1]*x_cont)/Lambda;
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int m_mid = m/2;

FKoutput[m_mid] = func(input[m_mid],parms[1],Lambda);

int i_d = 1;

double indicator1 = 1;

double indicator2 = 1;

while ( ( abs(indicator1) > 1e-30

|| abs(indicator2) > 1e-30 ) && (i_d<m/2)){

indicator1 = func(input[m_mid-i_d],parms[1],Lambda);

indicator2 = func(input[m_mid+i_d],parms[1],Lambda);

FKoutput[m_mid-i_d] = indicator1;

FKoutput[m_mid+i_d] = indicator2;

i_d=i_d+1;

}

arma::vec FK_op(FKoutput.begin(), m, false);

arma::vec FK_i_f(m,fill::zeros);

arma::cx_vec FK_f(FK_op,FK_i_f);

arma::vec mcon(const_cast<NumericVector

&>(mconst).begin(), m, false);

arma::cx_vec fXF = mcon*beta%arma::ifft(mcon%FK_f)/2/PI*m;

arma::vec fhat = arma::real(fXF);

int n_re = re.size();

NumericVector f_estimate(n_re);

for (int i=0; i<n_re; i++) {
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int ind = (int)(round(re[i]/beta+m_mid));

f_estimate[i] = fhat[ind];

}

double f_e = Rcpp::sum(f_estimate)/n_re/-Lambda ;

return f_e;

}
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Appendix H

Supplement Materials for Graphs and Tables

Table H.1: Two-layer tuning parameter selection. Av-
erages of parameter estimates over 300 repetitions when
n = 200 under (F2). Numbers in parentheses are (10 ×
standard errors) associate with the averages. The truth
is β1 = 3.

75% 85% 95%
β1 NE2 β1 NE2 β1 NE2

U ∼ N(0, σ2)
Naive 1.56 0.43 2.01 0.29 2.57 0.12

(0.21) (0.24) (0.19) (0.25) (0.14) (0.16)
CK 2.49 0.13 2.65 0.09 2.79 0.08

(0.18) (0.05) (0.18) (0.05) (0.15) (0.12)
U ∼ Laplace(0, σ2)

Naive 1.70 0.42 2.14 0.24 2.61 0.10
(0.26) (0.26) (0.21) (0.22) (0.16) (0.13)

CK 2.78 0.11 2.83 0.09 2.82 0.06
(0.24) (0.05) (0.20) (0.05) (0.14) (0.03)

TRUE 2.88 0.07
(0.16) (0.16)

Table H.2: Two-layer tuning parameter selection. Av-
erages of parameter estimates over 300 repetitions when
n = 400 under (F2). Numbers in parentheses are (10 ×
standard errors) associate with the averages. The truth
is β1 = 3.

75% 85% 95%
β1 NE2 β1 NE2 β1 NE2

U ∼ N(0, σ2)
NaiveN 1.58 0.33 2.05 0.15 2.57 0.06

(0.14) (0.10) (0.11) (0.06) (0.10) (0.05)
CKN 2.47 0.08 2.68 0.05 2.81 0.04

(0.15) (0.03) (0.13) (0.02) (0.10) (0.02)
U ∼ Laplace(0, σ2)

Naive 1.77 0.25 2.18 0.13 2.63 0.06
(0.17) (0.10) (0.14) (0.05) (0.12) (0.07)

CK 2.84 0.06 2.85 0.04 2.88 0.03
(0.16) (0.03) (0.13) (0.02) (0.10) (0.01)

TRUE 2.91 0.03
(0.09) (0.09)
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Figure H.1: Two-layer tuning parameter selection. Under the simulation setting
(F2) and the sample size n = 200. Boxplots of estimates of β1 (on the left panels) and
estimates of NE2 (on the right panels) when U is Laplace measurement error at three
levels of reliability ratios (from the top row to the bottom row), λ = 0.75, 0.85, 0.95.
Within each panel, the three estimates (from left to right) result from the naive one-
stage method (NAIVE), the corrected kernel one-stage method (CKO), and one-stage
(RO) in the absence of measurement error, respectively.
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Figure H.2: Two-layer tuning parameter selection. Under the simulation setting
(F2) and the sample size n = 200. Boxplots of estimates of β1 (on the left panels) and
estimates of NE2 (on the right panels) when U is Normal measurement error at three
levels of reliability ratios (from the top row to the bottom row), λ = 0.75, 0.85, 0.95.
Within each panel, the three estimates (from left to right) result from the naive one-
stage method (NAIVE), the corrected kernel one-stage method (CKO), and one-stage
method (RO) in the absence of measurement error, respectively.
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Figure H.3: Two-layer tuning parameter selection. Under the simulation setting
(F2) and the sample size n = 400. Boxplots of estimates of β1 (on the left panels) and
estimates of NE2 (on the right panels) when U is Laplace measurement error at three
levels of reliability ratios (from the top row to the bottom row), λ = 0.75, 0.85, 0.95.
Within each panel, the three estimates (from left to right) result from the naive one-
stage method (NAIVE), the corrected kernel one-stage method (CKO), and one-stage
(RO) in the absence of measurement error, respectively.
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Figure H.4: Two-layer tuning parameter selection. Under the simulation setting
(F2) and the sample size n = 400. Boxplots of estimates of β1 (on the left panels) and
estimates of NE2 (on the right panels) when U is Normal measurement error at three
levels of reliability ratios (from the top row to the bottom row), λ = 0.75, 0.85, 0.95.
Within each panel, the three estimates (from left to right) result from the naive one-
stage method (NAIVE), the corrected kernel one-stage method (CKO), and one-stage
method (RO) in the absence of measurement error, respectively.
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Figure H.5: Two dimensional cross validation tuning parameter selection. Under
the simulation setting (F4) and the sample size n = 200. Boxplots of estimates
of β1 (on the left panels) and estimates of NE2 (on the right panels) when U is
Laplace measurement error at three levels of reliability ratios (from the top row to
the bottom row), λ = 0.75, 0.85, 0.95. Within each panel, the three estimates (from
left to right) result from the naive two-stage method (NAIVE), the corrected kernel
two-stage method (CKT), and two-stage (RT) in the absence of measurement error,
respectively.
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Figure H.6: Two dimensional cross validation. Under the simulation setting (F4)
and the sample size n = 200. Boxplots of estimates of β1 (on the left panels) and
estimates of NE2 (on the right panels) when U is Normal measurement error at three
levels of reliability ratios (from the top row to the bottom row), λ = 0.75, 0.85, 0.95.
Within each panel, the three estimates (from left to right) result from the naive two-
stage method (NAIVE), the corrected kernel two-stage method (CKT), and two-stage
method (RT) in the absence of measurement error, respectively.
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Figure H.7: Two dimensional cross validation tuning parameter selection. Under
the simulation setting (F4) and the sample size n = 400. Boxplots of estimates
of β1 (on the left panels) and estimates of NE2 (on the right panels) when U is
Laplace measurement error at three levels of reliability ratios (from the top row to
the bottom row), λ = 0.75, 0.85, 0.95. Within each panel, the three estimates (from
left to right) result from the naive two-stage method (NAIVE), the corrected kernel
two-stage method (CKT), and two-stage (RT) in the absence of measurement error,
respectively.
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Figure H.8: Two dimensional cross validation. Under the simulation setting (F4)
and the sample size n = 400. Boxplots of estimates of β1 (on the left panels) and
estimates of NE2 (on the right panels) when U is Normal measurement error at three
levels of reliability ratios (from the top row to the bottom row), λ = 0.75, 0.85, 0.95.
Within each panel, the three estimates (from left to right) result from the naive two-
stage method (NAIVE), the corrected kernel two-stage method (CKT), and two-stage
method (RT) in the absence of measurement error, respectively.
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Table H.3: Averages of parameter estimates from the two-stage esti-
mation method over 300 repetitions under (F4) when n = 200. Numbers
in parentheses are (10 × standard errors) associate with the averages.
The truth is β0 = 1, β1 = 3.

75% 85% 95%
β0 β1 NE2 β0 β1 NE2 β0 β1 NE2

U ∼ N(0, σ2)
Naive 0.56 1.76 1.26 0.71 2.13 1.29 0.83 2.52 1.27

(0.20) (0.26) (0.28) (0.17) (0.23) (0.30) (0.17) (0.24) (0.30)
CK 0.78 2.37 1.28 0.85 2.62 1.23 0.91 2.78 1.22

(0.17) (0.26) (0.30) (0.16) (0.21) (0.27) (0.14) (0.16) (0.28)
U ∼ Laplace(0, σ2)

Naive 0.59 1.84 1.29 0.70 2.20 1.27 0.82 2.58 1.20
(0.19) (0.28) (0.29) (0.17) (0.26) (0.29) (0.15) (0.19) (0.27)

CK 0.90 2.77 1.24 0.89 2.74 0.76 0.90 2.77 1.22
(0.19) (0.29) (0.29) (0.16) (0.24) (0.35) (0.15) (0.16) (0.28)

TRUE 0.91 2.76 1.27
(0.15) (0.20) (0.28)

Table H.4: Averages of parameter estimates from the two-stage esti-
mation method over 300 repetitions under (F4) when n = 400. Numbers
in parentheses are (10 × standard errors) associate with the averages.
The truth is β0 = 1, β1 = 3.

75% 85% 95%
β0 β1 NE2 β0 β1 NE2 β0 β1 NE2

U ∼ N(0, σ2)
Naive 0.52 1.71 1.18 0.64 2.08 1.10 0.83 2.56 1.15

(0.15) (0.21) (0.21) (0.14) (0.19) (0.20) (0.12) (0.16) (0.20)
CK 0.80 2.39 1.12 0.87 2.61 1.12 0.92 2.79 1.10

(0.12) (0.18) (0.19) (0.11) (0.13) (0.19) (0.10) (0.10) (0.18)
U ∼ Laplace(0, σ2)

Naive 0.60 1.94 1.13 0.71 2.26 1.12 0.84 2.59 1.14
(0.15) (0.24) (0.20) (0.13) (0.22) (0.18) (0.12) (0.16) (0.19)

CK 0.89 2.79 1.10 0.91 2.81 0.61 0.94 2.84 1.13
(0.13) (0.19) (0.19) (0.11) (0.14) (0.31) (0.11) (0.11) (0.18)

TRUE 0.94 2.86 1.15
(0.11) (0.14) (0.19)
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